This dissertation depends on study of the topological structure in graph theory as well as introduce some concerning concepts, and generalization them into new topological spaces constructed using elements of graph. Thus, it is required presenting some theorems, propositions, and corollaries that are available in resources and proof which are not available. Moreover, studying some relationships between many concepts and examining their equivalence property like locally connectedness, convexity, intervals, and compactness. In addition, introducing the concepts of weaker separation axioms in α-topological spaces than the standard once like, α-feebly Hausdorff, α-feebly regular, and α-feebly normal and studying their properties. Furthermore, providing the necessary condition for α-feebly normality property to become hereditary. Also, using a new topological model for graphs are the edges represented as points which enables us to express in a topological language about combinatorial concepts. Moreover, showing that an α-connected orderable spaces are exactly α-topologized graphs. Finally, realizing the relationship between the α-topology on the vertex set and the once on the whole space by α-feebly regularity property.
In this paper, a polymer-based composite material was prepared by hand Lay-up method consisting of epoxy resin as a base material reinforced by magnesium oxide powder once and silicon dioxide powder again and with different weight ratios (3, 6, 9 and 12) wt %. The three-point bending test was performed in normal conditions and after immersion in sulfuric acid. The results showed that the bending value decreased with the increase of the weighted ratio of the reinforcement material (MgO, SiO2). The Bending of samples reinforced by SiO2 was found to be less than the bending of samples reinforced by particles (MgO). For example, the bending of the SiO2 sample (0.32 mm) at the weighted ratio (3%) and for the MgO (0.18mm) sample at the weight
... Show MoreComplex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.
In this paper we study the notion of preradical on some subcategories of the category of semimodules and homomorphisms of semimodules.
Since some of the known preradicals on modules fail to satisfy the conditions of preradicals, if the category of modules was extended to semimodules, it is necessary to investigate some subcategories of semimodules, like the category of subtractive semimodules with homomorphisms and the category of subtractive semimodules with ҽҟ-regular homomorphisms.
The theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
The platforms of social networking sites, with their distinctive communication and technological features, create a social movement that led to the establishment of a new pattern of communication in a modern context. This allows the users on the internet to carry out many social interactions based on the interests and commonalities among them. Algerian women have a share of this digital presence by representing their views and discussing their issues on several sites like Facebook, for example.
In this research, we have analyzed the pages of Algerian women on Facebook site to find out the most important issues addressed by Algerian women so that we can organize their concerns in the digital channels and discover their different orie
This study introduces a series of single and pile group model tests subjected to lateral loads in . multilayered sand from Karbala, Iraq. The aim of this study is to investigate: the performance of the pile groups subjected to lateral loads; in which the pile batter inclination angle is changed; the effect of pile spacing (s/d) ratio, the influence of using different number of piles and pile group configuration. Results revealed that the performance of single negative (Reverse) Battered piles with inclination of 10° and 20° show a gain of 32% and 76 % in the ultimate lateral capacity over the regular ones. For pile groups, the use of a combination of regular, negative and positive battered piles in
... Show MoreIn this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
Background: The prevalence of both obesity & diabetes are increasing all over the world & more in women. They have a negative impact not only on morbidity & mortality but also on quality of life.
Objectives: To assess the HRQoL with a specific comparison between obese & normal weight among wo
... Show MoreR. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
As the bit rate of fiber optic transmission systems is increased to more than , the system will suffer from an important random phenomena, which is called polarization mode dispersion. This phenomenon contributes effectively to: increasing pulse width, power decreasing, time jittering, and shape distortion. The time jittering means that the pulse center will shift to left or right. So that, time jittering leads to interference between neighboring pulses. On the other hand, increasing bit period will prevent the possibility of sending high rates. In this paper, an accurate mathematical analysis to increase the rates of transmission, which contain all physical random variables that contribute to determine the transmission rates, is presen
... Show More