The cloud point extraction technique has become increasingly popular in recent years for trace metal separation and preconcentration. When heated to a specific temperature, cloud point extraction utilizes the property of nonionic surfactants in aqueous solutions to generate micelles and become turbid (so-called cloud point temperature). For analytical chemists, developing a simple and selective technology for the separation and determination of metals and medicinal drugs is a critical concern. Therefore, a sensitive, accurate, and green cloud point extraction (CPE) procedure was developed for the micro-determination of metal cations like zinc (II) and cadmium (II) in food samples. Triton X–114 and 1-(4-(Phenyldiazenyl) phenyl) a
... Show More<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on
... Show MoreA soliton is a solitary wave whose amplitude, shape, and velocity are conserved after a collision with another soliton. Solitons, in general, manifest themselves in a large variety of wave/particle systems in nature: practically in any system that possesses both dispersion (in time or space) and nonlinearity. Solitons have been identified in optics, plasmas, fluids, condensed matter, particle physics, and astrophysics. Yet over the past decade, the forefront of soliton research has shifted to neuroscience. The Soliton model in optical fiber is a recently developed model that attempts to explain how signals are propagated within optical fiber without dispersion. In this research, it proposes that the signals travel along the Single Mode O
... Show MoreVisualization of water flow around different bluff bodies at different Reynolds number ranging (1505 - 2492) was realized by designing and building a test rig which contains an open channel capable to ensure water velocity range (4-8cm/s) in this channel. Hydrogen bubbles generated from the ionized water using DC power supply are visualized by a light source and photographed by a digital camera. Flow pattern around a circular disk of (3.6cm) diameter and (3mm) thickness, a sphere of (3.8cm) diameter and a cylinder of
(3.2cm) diameter and (10cm) length are studied qualitatively. Parameters of the vortex ring generated in the wake region of the disk and the separation angle of water stream lines from the surface of the sphere are plott
In this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between every
... Show MoreIn this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between ev
... Show MoreCognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper ,
... Show More