Statistical studies are reported in this article for an active galactic nuclei sample of different type of active galaxies Seyferts 1, Seyferts 2, and Quasars. These sources have been selected from a Catalogue for bright X-ray galaxies. The name of this index is ROSAT Bright Source Catalogue (RBSC) and the NRAO VLA Sky Survey (NVSS). In this research, multi-wavelength observational bands Radio at 1.4 GHz, Optical at 4400 A0, and X-ray at energy 0.1-2.4 KeV have been adopted in this study. The behavior of flux density ratios has been studied , with respect to the absolute magnitude . Furthermore, the Seyfert1 and Seyfert 2 objects are combined in one group and the QSOs are collectest in another group. Also, it has been found that the ratios , are increasing towards fainter optical absolute magnitude especially in Quasars.
Single-input Multiple-output Signals Third-order Active-R Filter for different Circuit Merit Factor Q Configuration is proposed. This paper discusses a new configuration to realize third-order low pass, band pass and high pass. The presented circuit uses Single-input Multiple-output signals, OP-AMP and passive components. This filter is useful for high frequency operation, monolithic IC implementation and it is easy to design .This circuit gives three filter functions low-pass, high-pass and band-pass. This filter circuit can be used for different merit factor (Q) with high pass band gain. This gives better stop-band attenuation and sharper cut-off at the edge of the pass-band. Thus the response shows wider pass-band. The Ideal value of thi
... Show MoreAbstractIn the field of construction materials the glass reinforced mortar and Styrene Butadiene mortar are modern composite materials. This study experimentally investigated the effect of addition of randomly dispersed glass fibers and layered glass fibers on density and compressive strength of mortar with and without the presence of Styrene Butadiene Rubber (SBR). Mixtures of 1:2 cement/sand ratio and 0.5 water/cement ratio were prepared for making mortar. The glass fibers were added by two manners, layers and random with weight percentages of (0.54, 0.76, 1.1 and 1.42). The specimens were divided into two series: glass-fiber reinforced mortar without SBR and glass-fiber reinforced mortar with 7% SBR of mixture water. All s
... Show More
This research aims to investigate the color distribution of a huge sample of 613654 galaxies from the Sloan Digital Sky Survey (SDSS). Those galaxies are at a redshift of 0.001 - 0.5 and have magnitudes of g = 17 - 20. Five subsamples of galaxies at redshifts of (0.001 - 0.1), (0.1 - 0.2), (0.2 - 0.3), (0.3 - 0.4) and (0.4 - 0.5) have been extracted from the main sample. The color distributions (u-g), (g-r) and (u-r) have been produced and analysed using a Matlab code for the main sample as well as all five subsamples. Then a bimodal Gaussian fit to color distributions of data that have been carried out using minimum chi-square in Microsoft Office Excel. The results showed that the color distributions of the main sample and
... Show MoreIn this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreThe Nano materials play a very important role in the heat transfer enhancement. An experimental investigation has been done to understand the behaviors of nano and micro materials on critical heat flux. Pool boiling experiments have used for several concentrations of nano and micro particles on a 0.4 mm diameter nickel chrome (Ni-Cr) wire heater which is heated electrically at atmospheric pressure. Zinc oxide(ZnO) and silica(SiO2) were used as a nano and micro fluids with concentrations (0.01,0.05,0.1,0.3,0.5,1 g/L), a marked enhancement in CHF have been shown in the results for nano and micro fluids for different concentrations compared to distilled water. The deposition of the nano particles on the heater surface was the rea
... Show MoreSolar energy usage in Iraq is facing many issues; one of those is the accumulation “of the dust on the surface of the solar module which” would highly lower its efficiency. The present work study the effect of dust accumulation” on installing fixed solar modules with different inclined angles 15o, 33o, 45o, 60o. Evaluation of the solar modules performance under different circumstance conditions such as rain, wind and humidity are considered in study of dust effect on solar module performance. The results show that the lowest output average efficiencies of solar modules occurs at 15o horizontally inclined angle are 7.4% , 6.7% , 8.0% , 8.1%, and 8.4% for the cor
... Show MoreHeat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.
In this work, the effect of aluminum (Al) dust particles on the DC discharge plasma properties in argon was investigated. A magnetron is placed behind the cathode at different pressures and with varying amounts of Al. The plasma temperature (Te) and density (ne) were calculated using the Boltzmann equation and Stark broadening phenomena, which are considered the most important plasma variables through which the other plasma parameters were calculated. The measurements showed that the emission intensity decreases with increasing pressure from 0.06 to 0.4 Torr, and it slightly decreases with the addition of the NPs. The calculations showed that the ne increased and Te decreased with pressure. Both Te and ne were reduced by increasing
... Show More