Symmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a randomly predefined set of key numbers of size n via the Donald E. Knuths SRNG algorithm (subtractive method). The second phase uses the output key (or seed value) from the previous phase as input to the Latin square matrix (LSM) to formulate a new key randomly. To increase the complexity of the generated key, another new random key of the same length that fulfills Shannon’s principle of confusion and diffusion properties is XORed. Four test keys for each 128, 192,256,512, and 1024–bit length are used to evaluate the strength of the proposed model. The experimental results and security analyses revealed that all test keys met the statistical National Institute of Standards (NIST) standards and had high values for entropy values exceeding 0.98. The key length of the proposed model for n bits is 25*n, which is large enough to overcome brute-force attacks. Moreover, the generated keys are very sensitive to initial values, which increases the complexity against different attacks.
Starting with a problem of the weakness of accounting disclosure in some companies administration when preparing and presenting the financial reports which are submitted to the Tax authority. This problem impacts on Tax authority performance (The effect on the quality of the performance of the tax authority), because of the lack of conviction for the information contained in those reports, and the failure to achieve accurate results in tax authority performance that leads to a negative impact on determining taxable income and affect tax revenue, as well as negative impact on determining taxable income and affect tax revenue, as well as negati
... Show MoreAt the heart of every robust economy is a vital banking system. The functional banking system can effectively perform several functions such as mobilizing savings, allocating credit, monitoring managers, transforming risks, and facilitating the financial transactions. This paper aims to measure the impact of banking system development on economic growth in Iraq. Credit to private sector divided by GDP used as a proxy of banking development. Real per capita GDP used as a proxy of economic growth. By using Autoregressive Distributed Lag (ARDL) model, the paper finds that the undeveloped Iraqi banking system could not promote economic growth in the country. Therefore, a variety of policies need to be taken to spur the role of bankin
... Show MoreBiometrics is widely used with security systems nowadays; each biometric modality can be useful and has distinctive properties that provide uniqueness and ambiguity for security systems especially in communication and network technologies. This paper is about using biometric features of fingerprint, which is called (minutiae) to cipher a text message and ensure safe arrival of data at receiver end. The classical cryptosystems (Caesar, Vigenère, etc.) became obsolete methods for encryption because of the high-performance machines which focusing on repetition of the key in their attacks to break the cipher. Several Researchers of cryptography give efforts to modify and develop Vigenère cipher by enhancing its weaknesses.
... Show MoreTo achieve safe security to transfer data from the sender to receiver, cryptography is one way that is used for such purposes. However, to increase the level of data security, DNA as a new term was introduced to cryptography. The DNA can be easily used to store and transfer the data, and it becomes an effective procedure for such aims and used to implement the computation. A new cryptography system is proposed, consisting of two phases: the encryption phase and the decryption phase. The encryption phase includes six steps, starting by converting plaintext to their equivalent ASCII values and converting them to binary values. After that, the binary values are converted to DNA characters and then converted to their equivalent complementary DN
... Show MoreThe confirming of security and confidentiality of multimedia data is a serious challenge through the growing dependence on digital communication. This paper offers a new image cryptography based on the Chebyshev chaos polynomials map, via employing the randomness characteristic of chaos concept to improve security. The suggested method includes block shuffling, dynamic offset chaos key production, inter-layer XOR, and block 90 degree rotations to disorder the correlations intrinsic in image. The method is aimed for efficiency and scalability, accomplishing complexity order for n-pixels over specific cipher rounds. The experiment outcomes depict great resistant to cryptanalysis attacks, containing statistical, differential and brut
... Show MoreChaotic systems have been proved to be useful and effective for cryptography. Through this work, a new Feistel cipher depend upon chaos systems and Feistel network structure with dynamic secret key size according to the message size have been proposed. Compared with the classical traditional ciphers like Feistel-based structure ciphers, Data Encryption Standards (DES), is the common example of Feistel-based ciphers, the process of confusion and diffusion, will contains the dynamical permutation choice boxes, dynamical substitution choice boxes, which will be generated once and hence, considered static,
While using chaotic maps, in the suggested system, called
The efficiency of the Honeywords approach has been proven to be a significant tool for boosting password security. The suggested system utilizes the Meerkat Clan Algorithm (MCA) in conjunction with WordNet to produce honeywords, thereby enhancing the level of password security. The technique of generating honeywords involves data sources from WordNet, which contributes to the improvement of authenticity and diversity in the honeywords. The method encompasses a series of consecutive stages, which include the tokenization of passwords, the formation of alphabet tokens using the Meerkat Clan Algorithm (MCA), the handling of digit tokens, the creation of unique character tokens, and the consolidation of honeywords. The optimization of t
... Show MoreThis paper presents the design of a longitudinal controller for an autonomous unmanned aerial vehicle (UAV). This paper proposed the dual loop (inner-outer loop) control based on the intelligent algorithm. The inner feedback loop controller is a Linear Quadratic Regulator (LQR) to provide robust (adaptive) stability. In contrast, the outer loop controller is based on Fuzzy-PID (Proportional, Integral, and Derivative) algorithm to provide reference signal tracking. The proposed dual controller is to control the position (altitude) and velocity (airspeed) of an aircraft. An adaptive Unscented Kalman Filter (AUKF) is employed to track the reference signal and is decreased the Gaussian noise. The mathematical model of aircraft
... Show More