Symmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a randomly predefined set of key numbers of size n via the Donald E. Knuths SRNG algorithm (subtractive method). The second phase uses the output key (or seed value) from the previous phase as input to the Latin square matrix (LSM) to formulate a new key randomly. To increase the complexity of the generated key, another new random key of the same length that fulfills Shannon’s principle of confusion and diffusion properties is XORed. Four test keys for each 128, 192,256,512, and 1024–bit length are used to evaluate the strength of the proposed model. The experimental results and security analyses revealed that all test keys met the statistical National Institute of Standards (NIST) standards and had high values for entropy values exceeding 0.98. The key length of the proposed model for n bits is 25*n, which is large enough to overcome brute-force attacks. Moreover, the generated keys are very sensitive to initial values, which increases the complexity against different attacks.
Performance issues could be appearing from anywhere in a computer system, finding the root cause of those issues is a troublesome issue due to the complexity of the modern systems and applications. Microsoft builds multiple mechanisms to make their engineers understand what is happening inside All Windows versions including Windows 10 Home and the behavior of any application working on it whether Microsoft services or even third-party applications, one of those mechanisms is the Event Tracing for Windows (ETW) which is the core of logging and tracing in Windows operating system to trace the internal events of the system and its applications. This study goes deep into internal process activities to investigat
... Show MoreThe concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s
... Show MoreFuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreThis paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show MoreCryptography can be thought of as a toolbox, where potential attackers gain access to various computing resources and technologies to try to compute key values. In modern cryptography, the strength of the encryption algorithm is only determined by the size of the key. Therefore, our goal is to create a strong key value that has a minimum bit length that will be useful in light encryption. Using elliptic curve cryptography (ECC) with Rubik's cube and image density, the image colors are combined and distorted, and by using the Chaotic Logistics Map and Image Density with a secret key, the Rubik's cubes for the image are encrypted, obtaining a secure image against attacks. ECC itself is a powerful algorithm that generates a pair of p
... Show MoreObjective of this work is the mixing between human biometric characteristics and unique attributes of the computer in order to protect computer networks and resources environments through the development of authentication and authorization techniques. In human biometric side has been studying the best methods and algorithms used, and the conclusion is that the fingerprint is the best, but it has some flaws. Fingerprint algorithm has been improved so that their performance can be adapted to enhance the clarity of the edge of the gully structures of pictures fingerprint, taking into account the evaluation of the direction of the nearby edges and repeat. In the side of the computer features, computer and its components like human have uniqu
... Show MoreA remarkable correlation between chaotic systems and cryptography has been established with sensitivity to initial states, unpredictability, and complex behaviors. In one development, stages of a chaotic stream cipher are applied to a discrete chaotic dynamic system for the generation of pseudorandom bits. Some of these generators are based on 1D chaotic map and others on 2D ones. In the current study, a pseudorandom bit generator (PRBG) based on a new 2D chaotic logistic map is proposed that runs side-by-side and commences from random independent initial states. The structure of the proposed model consists of the three components of a mouse input device, the proposed 2D chaotic system, and an initial permutation (IP) table. Statist
... Show More