A compact microstrip six-port reflectometer (SPR) with extended bandwidth is proposed in this paper. The design is based on using 16-dB multi-section coupled line directional couplers and a multi-section 3-dB Wilkinson power divider operating from 1 to 6 GHz. The proposed SPR employs only two calibration standards: a matched load and an open load. As compared to other dielectric substrates, fabricating the proposed SPR involves using a low-cost (FR4) substrate. A novel algorithm is also proposed to estimate the complex reflection coefficient over the frequency ranges at which the standard performance of the circuit components is not fully satisfied. The new algorithm is based on the circles’ intersection points, which have been derived from basic SPR equations, to estimate the complex reflection coefficient. To validate the SPR performance, a multiband microstrip patch antenna has been measured and the resulted reflection coefficient is compared with those obtained using a vector network analyzer (VNA). Results show that the proposed SPR provides a good estimation of the complex reflection coefficient within the frequency range of 1 GHz to 8 GHz. Owing to its compact size and ease of fabrication, the proposed reflectometer is suitable for various microwave broadband applications.
A series of laboratory model tests has been carried out to investigate the using of pomegranate sticks mat as reinforcement to increase the bearing capacity of footing on loose sand. The influence of depth and length of pomegranate sticks layer was examined. In the present research single layer of pomegranate sticks reinforcement was used to strengthen the loose sand stratum beneath the strip footing. The dimensions of the used foundation were 4*20 cm. The reinforcement layer has been embedded at depth 2, 4 and 8 cm under surcharge stresses . Reinforcing layer with length of 8 and 16 cm were used. The final model test results indicated that the inclusion of pomegranate sticks reinforcement is very effective in improvement the loading cap
... Show MoreIn this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively
Three hundred samples of washing water of vegetables were collected from women aged ( 15- 6o) years from different area in Baghdad governorate and its suburbs include two rural area ( Jaddria in Baghdad university and Al –Wagif in Rashdia) and two urbane area (Mansoure and Escan) . The samples were examined by precipitation method and then by staining method ( Lugols –Iodine stain) . The percentage of infection of intestinal parasites 36.3% include 15.3% for urban area and 57.3% in rural area and a significant difference was found between those groups . .The results showed also increased in the prevalence of parasitic infection in group age (15 -30) year .Also the results showed only 109 sample infected with eight specie
... Show MoreDouble-layer micro-perforated panels (MPPs) have been studied extensively as sound absorption systems to increase the absorption performance of single-layer MPPs. However, existing proposed models indicate that there is still room for improvement regarding the frequency bands of absorption for the double-layer MPP. This study presents a double-layer MPP formed with two single MPPs with inhomogeneous perforation backed by multiple cavities of varying depths. The theoretical formulation is developed using the electrical equivalent circuit method to calculate the absorption coefficient under a normal incident sound. The simulation results show that the proposed model can produce absorption coefficient with wider absorption bandwidth compared w
... Show MoreThis research aims to suggest formulas to estimate carry-over effects with two-period change-over design, and then, all other effects in the analysis of variance of this design, and find the efficiency of the two-period change-over design relative to another design (say, completely randomized design).
The design of reinforced concrete spread foundations mainly depends on soil bearing capacity, loading value, and column size. So for each design case, tiresome calculations and time consumption are needed. In this paper, generalized design charts are presented and plotted according to derivations based on the ACI 318 M-2019 Code. These charts could be used directly by the structural designers to estimate the column size, foundation thickness, and dimensions as well as the foundation reinforcement under a certain given concentric load assuming a uniformly distributed contact pressure underneath the foundation. Of noteworthy, these charts are oriented to deal with square isolated footings with a square concentric column, covering reasonable r
... Show MoreThe aim of this paper is to design a PID controller based on an on-line tuning bat optimization algorithm for the step-down DC/DC buck converter system which is used in the battery operation of the mobile applications. In this paper, the bat optimization algorithm has been utilized to obtain the optimal parameters of the PID controller as a simple and fast on-line tuning technique to get the best control action for the system. The simulation results using (Matlab Package) show the robustness and the effectiveness of the proposed control system in terms of obtaining a suitable voltage control action as a smooth and unsaturated state of the buck converter input voltage of ( ) volt that will stabilize the buck converter sys
... Show More