Abstract : Silicone elastomer is widely used as the material of choice for fabricating maxillofacial prosthesis. However, silicone properties are far from ideal; low tear strength, low tensile strength and insufficient elasticity are the most undesirable properties. The purpose of this study was to evaluate the effect of addition of nano SiO2filler on tear strength, tensile strength, elongation at break, hardness and color of Cosmesil M-511 HTV maxillofacial silicone elastomer. Nano SiO2was added to the silicone base in concentrations of 4%, 5% and 6% by weight. Silicone with 0% nano filler served as a control. Tear test was done according to ISO 34-1. Tensile and elongation test was done according to ISO 37. Shore A hardness test was done according to ISO 7619. Visual color measurement test was done according to ASTM D1535. Scanning electron microscope was used to assess the efficiency of dispersing method. FTIR test was conducted to evaluate the interaction of nano SiO2with the silicone. Statistical analysis was done using one-way ANOVA and Fisher’s LSD test. SEM showed well dispersion of nano filler within the silicone matrix. FTIR indicated that nano SiO2interacted with the PDMS through its surface hydroxyl group. All nano SiO2concentration groups showed a highly significant increase in tear strength, tensile strength and elongation at break compared to the control group. The 5% group showed the highest mean values among other groups. Shore A hardness showed a highly significant increase with all nano SiO2concentrations with the increase being directly proportional to filler concentration increase. Spectrophotometer results showed a highly significant decrease in translucency of the material with all nano filler concentrations but this decrease in translucency was visually demonstrated as slight increase in color intensity. Reinforcement of M-511 silicone with 5% nano SiO2significantly improves all mechanical properties tested with a slight change of color seen visually.
Chemical spray pyrolysis technique was used at substrate temperature 250 ˚C with annealing temperature at 400 ˚C (for 1hour) to deposition tungsten oxide thin film with different doping concentration of Au nanoparticle (0, 10, 20, 30 and 40)% wt. on glass substrate with thickness about 100 nm. The structural, optical properties were investigated. The X-ray diffraction shows that the films at substrate temperature (250 ˚C) was amorphous while at annealing temperature have a polycrystalline structure with the preferred orientation of (200), all the samples have a hexagonal structure for WO3 and Au gold nanoparticles have a cubic structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films. The optical pr
... Show MoreAgInSe2 (AIS) thin films solar cell involving of n-type AgInSe2 and Si of p-type substrate by using thermal evaporation method. The influence of annealing of the preparation AgInSe2 were considered to find the best properties of solar device. Thin film AIS have been deposited under the vacuum of 1.5*10-6 Torr with (400) nm thickness at R.T and annealing temperatures (473,573) K. Polycrystalline tetragonal structure for AIS thin films from XRD and increasing of surface roughness from AFM, energy gap values decreasing with increasing annealing temperatures, all films were negative type, I-V characteristics show increasing of efficiency with increasing of annealing temperatures.
Adversity and psychosocial stress are involved in aging through the following pathways. psychological stress enhances the nerve system to secrete endocrine mediators (hormones). Mitochondrial respiration mediates energy production stimulated by binding to these hormones to their receptors. Energy produced by mitochondria accelerates metabolism and, in its turn, leads to increases in reactive oxygen species (ROS) of free radicals. Cellular stress and accumulation of damage can result from an excess of ROS. Accumulation of damage comprises damages in telomeric and nontelomeric DNA, in addition to mitochondrial DNA. Mitochondrial DNA damage plays an important role in increasing the pathway of p53/p21. The expression of the PGC-1α gene is inhi
... Show MoreAim: This study aimed to compare different types of ligation methods to obtain maximum tooth movement with the least undesirable rotation. Methods: Titanium brackets bonded to acrylic canine teeth were ligated to straight stainless steel (SS) archwires using four ligation methods (figure-O and figure-8 elastics, SS ligatures, and Leone Slide ligatures). The teeth with the ligatures in place were stored in a water bath at 37ºC for 1 day, 1 week, 2, 4 or 6 weeks before testing. The teeth were retracted through softened wax along the archwire and the amount of tooth movement and degree of rotation were measured. Results: Slide ligatures showed the highest distance of tooth movement and degree of canine rotation followed by figure-O elastics
... Show MoreSelf-compacting concrete (SCC) is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The effect of external sulfate attack was studied-Es (very sever exposure SO4>10000ppm) according to ACI 318-11. The mix design method of SCC used is according to EFNARC 2002, and then must satisfy the criteria of filling ability, passing ability and segregation resistance. The experimental program focuses to study two different chemical composition of sulfate resistance Portland cement with different percentage of silica fume replacement by weight of cement and W/cm (0.3 and 0.3
... Show MoreThe present study deals with the experimental investigation of buried concrete pipes. Concrete pipes are buried in loose and dense conditions of gravelly sand soil and subjected to different surface loadings to study the effects of the backfill compaction on the pipe. The experimental investigation was accomplished using full-scale precast unreinforced concrete pipes with 300 mm internal diameter tested in a laboratory soil box test facility set up for this study. Two loading platforms are used namely, uniform loading platform and patch loading platform. The wheel load was simulated through patch loading platform which have dimensions of 254 mm *508 mm, which is used by AASHTO to model the wheel load of a HS20 truck. The pipe-soil system
... Show MoreSolar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si), poly-crystalline Silicon (pc-Si), amorphous Silicon (a-Si) and Cupper Indium Gallium di-selenide (CIGS) photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit v
... Show More