The laminar fluid flow of water through the annulus duct was investigated numerically by ANSYS fluent version 15.0 with height (2.5, 5, 7.5) cm and constant length (L=60cm). With constant heat flux applied to the outer duct. The heat flux at the range (500,1000,1500,2000) w/m2 and Reynolds number values were ≤ 2300. The problem was 2-D investigated. Results revealed that Nusselt number decrease and the wall temperature increase with the increase of heat flux. Also, the average Nusselt number increase as Re increases. And as the height of the annulus increase, the values of the temperature and the local and average Nusselt number increase.
In this paper, a mathematical model for the oxidative desulfurization of kerosene had been developed. The mathematical model and simulation process is a very important process due to it provides a better understanding of a real process. The mathematical model in this study was based on experimental results which were taken from literature to calculate the optimal kinetic parameters where simulation and optimization were conducted using gPROMS software. The optimal kinetic parameters were Activation energy 18.63958 kJ/mol, Pre-exponential factor 2201.34 (wt)-0.76636. min-1 and the reaction order 1.76636. These optimal kinetic parameters were used to find the optimal reaction conditions which
... Show MoreIn this study, a simulation model inside a channel of rectangular section with high of (0.16 m) containing two rectangular obstruction plates were aligned variable heights normal to the direction of flow, use six model of the obstructions height of (0.059, 0.066, 0.073, 0.08 and 0.087 m) were compared with the flow behavior of the same duct without obstructions. To predict the velocity profile, pressure distribution, pressure coefficient and turbulence kinetic energy flow of air, the differential equations which describe the flow were approximated by the finite volumes method for two dimensional, by using commercial software package (FLUENT) with standard of k-ε model two dimensions turbulence flow.
... Show MoreAtherosclerosis is the most common causes of vascular diseases and it is associated with a restriction in the lumen of blood vessels. So; the study of blood flow in arteries is very important to understand the relation between hemodynamic characteristics of blood flow and the occurrence of atherosclerosis.
looking for the physical factors and correlations that explain the phenomena of existence the atherosclerosis disease in the proximal site of LAD artery in some people rather than others is achieved in this study by analysis data from coronary angiography as well as estimating the blood velocity from coronary angiography scans without having a required data on velocity by using some mathematical equations and physical laws. Fif
... Show MoreThe flow in a manifolds considered as an advanced problem in hydraulic engineering applications. The objectives of this study are to determine; the uniformity qn/q1 (ratio of the discharge at last outlet, qn to the discharge at first outlet, q1) and total head losses of the flow along straight and rectangular loop manifolds with different flow conditions. The straight pipes were with 18 m and 19 m long and with of 25.4 mm (1.0 in) in diameter each. While, the rectangular close loop configuration was with length of 19 m and with diameter of 25.4 mm (1.0 in) also. Constant head in the supply tank was used and the head is 2.10 m. It is found that outlets spacing and manifold configuration are the main factors aff
... Show MoreThe one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the
The one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con
... Show MoreThe prediction of the blood flow through an axisymmetric arterial stenosis is one of the most important aspects to be considered during the Atherosclrosis. Since the blood is specified as a non-Newtonian flow, therefore the effect of fluid types and effect of rheological properties of non-Newtonian fluid on the degree of stenosis have been studied. The motion equations are written in vorticity-stream function formulation and solved numerically. A comparison is made between a Newtonian and non-Newtonian fluid for blood flow at different velocities, viscosity and Reynolds number were solved also. It is found that the properties of blood must be at a certain range to preventing atheroscirasis
An electrolytic process for the removal of Zn(II) from aqueous solution using a parallel amalgamated copper screens cathode operated in the flow through mode is proposed. The current-potential curves recorded at a rotating amalgamated copper disc electrode were used to determine diffusion coefficient of Zn(II). The performance of electrolytic reactor was investigated by using different flow rates at initial zinc ion concentration(48 mg/L). Taking into account the residential Zn(II) concentration, the best results were obtained for cathode potential of (-1.35 V vs. SCE) at flow rate (320 L/h). Zinc ion concentration was found to decrease from 48 mg/L to 1 mg/L during 120 min. of electrolysis. The experimental data are well correlate
... Show MoreThe analysis, behavior of two-phase flow incompressible fluid in T-juction is done by using "A Computational Fluid Dynamic (CFD) model" that application division of different in industries. The level set method was based in “Finite Element method”. In our search the behavior of two phase flow (oil and water) was studed. The two-phase flow is taken to simulate by using comsol software 4.3. The multivariable was studying such as velocity distribution, share rate, pressure and the fraction of volume at various times. The velocity was employed at the inlet (0.2633, 0.1316, 0.0547 and 0.0283 m/s) for water and (0.1316 m/s) for oil, over and above the pressure set at outlet as a boundary condition. It was observed through the program
... Show More