The research aims to identify the availability of some basic competencies that are required to be available to workers in digital agricultural Extension from the point of view of senior management, middle management, and, employees with Post-graduate education degrees, represented by the following: Transition to digital agricultural Extension for sustainable and smart family farms, benefiting from international expertise and experiences in applying for Digital agricultural Extension, preparing and implementing Extension messages through platforms, factors affecting the effectiveness of digital agricultural Extension and its platforms, following up and evaluating the activities and programs of the digital Extension platform. The research population included agricultural Extension workers in senior management, middle management, and employees with Post-graduate education degrees in some of the governorates of the central region of Iraq, namely Baghdad, Holy Karbala, and Babel. A random sample was taken from the Post-graduate. The senior management, reached 46 respondents by 35%%, and 16 respondents, while the entire population was taken for senior management, which numbered 2, and the middle management, which numbered 41, and thus the sample subject to research became 59 respondents. A questionnaire was used to collect data from the respondents, consisting of 48 items, distributed over five areas: the transition to digital agricultural Extension for sustainable and smart family farms, benefiting from international expertise and experiences in the application of digital agricultural Extension, preparing and implementing Extension messages across platforms, factors Influencing the effectiveness of digital agricultural Extension and its media, following up and evaluating the activities and programs of the digital Extension platform at 11, 9, 10, 7, and 11 items, respectively, according to a quintuple scale, and the weighted mean, the weighted percentage, was used. The research concluded that there is a discrepancy in the respondents’ answers in the paragraphs of the five domains about the availability of some basic competencies among workers in digital agricultural Extension, which range from important to very important according to the scale of the importance level of quintiles, the highest value of which is 4 degrees and the lowest is zero, with a weighted average of the total for the five mentioned domains 3.25, 3.42 , 3.42, 3.42, 3.33 degrees and respectively The researcher recommends the necessity and importance of building human capital through the consolidation of these competencies through the continuous development and training of workers in digital Extension
Seawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic mov
Heat island is known as the increases in air temperature through large and industrial cities compared to surrounding rural areas. In this study, remote sensing technology is used to monitor and track thermal variations within the city center of Baghdad through Landsat satellite images and for the period from 2000 to 2015. Several processors and treatments were applied on these images using GIS 10.6 and ERDAS 2014, such as image correction and extraction, supervised classification, and selection of training samples. Urban areas detection was resulted from the supervised classification linked to the temperature readings of the surface taken from the thermal bands of satellite images. The results showed that the surface temperature of the c
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
There is an evidence that channel estimation in communication systems plays a crucial issue in recovering the transmitted data. In recent years, there has been an increasing interest to solve problems due to channel estimation and equalization especially when the channel impulse response is fast time varying Rician fading distribution that means channel impulse response change rapidly. Therefore, there must be an optimal channel estimation and equalization to recover transmitted data. However. this paper attempt to compare epsilon normalized least mean square (ε-NLMS) and recursive least squares (RLS) algorithms by computing their performance ability to track multiple fast time varying Rician fading channel with different values of Doppler
... Show MoreImmune-mediated hepatitis is a severe impendence to human health, and no effective treatment is currently available. Therefore, new, safe, low-cost therapies are desperately required. Berbamine (BE), a natural substance obtained primarily from
This c
Tanuma and Zubair formations are known as the most problematic intervals in Zubair Oilfield, and they cause wellbore instability due to possible shale-fluid interaction. It causes a vast loss of time dealing with various downhole problems (e.g., stuck pipe) which leads to an increase in overall well cost for the consequences (e.g., fishing and sidetrack). This paper aims to test shale samples with various laboratory tests for shale evaluation and drilling muds development. Shale's physical properties are described by using a stereomicroscope and the structures are observed with Scanning Electron Microscope. The shale reactivity and behavior are analyzed by using the cation exchange capacity testing and the capillary suction test is
... Show MoreThe evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show MoreHTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show More