The annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the system, (3) evaluating the annual energy and exergy analyses of the system under Mashhad weather conditions, and (4) examining the CO2 reduction by using the proposed system. The results show that for the (glazed) PVT and (glazed) ST systems, increasing the mass flow rate of the working fluid from 20 to 50 kg/h results in 22% and 1.5% improvements in both thermal and electrical power, respectively. However, the thermal exergy of the system decreases by 40.1%. Furthermore, the (glazed) PVT/(glazed) ST systems generate approximately 86% and 264% more thermal power and energy than the PVT/ST systems, respectively. Using a (glazed) PVT/(glazed) ST system with a working fluid’s mass flow rate of 50 kg/h results in maximum thermal and electrical efficiencies of 40.7% and 16.22%, respectively. According to the annual analysis, the highest average thermal and electrical power, equal to approximately 338.3 and 24 W, respectively, is produced in August. The amount of CO2 reduction increases by increasing the mass flow rate and using a glass cover. The PVT/(glazed)ST system has the potential to reduce CO2 emissions by 426.3 kg per year.
<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV arr
... Show MoreNumerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00
... Show MoreCeramic coating compose from a ceramic mixture (MgO, Al2O3) and metall (Al-Ni) were produced by Thermal Spray Technique. The mixed ratio of used materials Al:Ni (50%) and 40% of Al2O3 and 10% MgO. This mixture was spray on a stainless steel substrate of type (316 L) by using thermal spray with flame method and at spraying distances (8, 12, 16 and 20) cm, then the prepared films were treated by laser and thermal treatment. After that performing a hardness and adhesion tests were eximined. The present study shows that the best value of the thermal treatment is 1000 ℃ for 30 mint; the optimum spray distance is 12 cm and most suitable laser is 500 mJ where the microscopic and mechanical character
... Show MoreSchiff bases are versatile compounds synthesized from the condensation of primary amino compounds with aldehydes or ketones. The high thermal of many Schiff base and their complexes were useful attributes for their application as catalysts in reactions involving at high temperatures. This thermal behavior of Schiff bases and their complexes was evaluated by TGA/DTG and DTA curves with 10 mass losses related to dehydration and decomposition. This review summarizes the developments in the last decade for thermal analysis of Schiff bases. Therefore, synthesis of Schiff bases and their complexes are reviewe
In this work, the effect of vortex shedding on the solar collector performance of the parabolic trough solar collector (PTSC) was estimated experimentally. The effect of structure oscillations due to wind vortex shedding on solar collector performance degradation was estimated. The performance of PTSC is evaluated by using the useful heat gain and the thermal instantaneous efficiency. Experimental work to simulate the vortex shedding excitation was done. The useful heat gain and the thermal efficiency of the parabolic trough collector were calculated from experimental measurements with and without vortex loading. The prototype of the collector was fabricated for this purpose. The effect of vortex shedding at different operation condition
... Show MoreMortar of ordinary Portland cement was blended with cockles shell
powder at different weight ratios to investigate the effect of powder
admixture on their strength and thermal conductivity. Results showed
that addition of cockles shell powder at 50% of mortar weight
improves hardness and compressive strength notably and reduces the
thermal conductivity of the end product. Results suggest the
possibility to incorporate cockles shell powders as constituents in
cement mortars for construction and plastering applications.