Preferred Language
Articles
/
alkej-844
Yearly Energy, Exergy, and Environmental (3E) Analyses of A Photovoltaic Thermal Module and Solar Thermal Collector in Series
...Show More Authors

The annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the system, (3) evaluating the annual energy and exergy analyses of the system under Mashhad weather conditions, and (4) examining the CO2 reduction by using the proposed system. The results show that for the (glazed) PVT and (glazed) ST systems, increasing the mass flow rate of the working fluid from 20 to 50 kg/h results in 22% and 1.5% improvements in both thermal and electrical power, respectively. However, the thermal exergy of the system decreases by 40.1%. Furthermore, the (glazed) PVT/(glazed) ST systems generate approximately 86% and 264% more thermal power and energy than the PVT/ST systems, respectively. Using a (glazed) PVT/(glazed) ST system with a working fluid’s mass flow rate of 50 kg/h results in maximum thermal and electrical efficiencies of 40.7% and 16.22%, respectively. According to the annual analysis, the highest average thermal and electrical power, equal to approximately 338.3 and 24 W, respectively, is produced in August. The amount of CO2 reduction increases by increasing the mass flow rate and using a glass cover. The PVT/(glazed)ST system has the potential to reduce CO2 emissions by 426.3 kg per year. 

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Improving Thermal Performance in the University Classrooms
...Show More Authors

Universities are among spaces where it's important to ensure thermal comfort in indoor spaces, improving the occupants' well-being and productivity. The problem of the research was to study appropriate glazing systems for the spaces of the University of Baghdad because glazing systems are one of the most important elements of the indoor environments, and it has a major impact on the thermal performance of buildings. Glass is one of the most seasoned materials that are most utilized in the design. Since it is a diaphanous material, it allows sunlight to enter the building, increasing the space's temperature, cooling loads, and energy consumption in summer. The research followed the experimental method by studying and

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Applied Engineering Science
Transient analysis of laminated plates in thermal environment
...Show More Authors

Transient displacement of laminated plates under combined load based on Mantari' s displacement field are investigated. The solution is implemented under transient mechanical load (sinusoidal, step and triangular sinusoidal distributed pressures pulse) and thermal buckling for plates with different layer orientation and thickness ratio. Equations of motion based on higher-order theory are derived through Hamilton' s principle, and solved using Naviertype solution for simply supported laminated plates. The results are presented for many effective parameters such as the number of laminate and orientation on the dynamic response of plates. Results show the validity of this displacement field in studying response of laminated thick and

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Sep 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Effective Bed Thermal Conductivity and Heat Transfer Coefficient in Fluidized Beds
...Show More Authors

Experimental study of heat transfer coefficients in air-liquid-solid fluidized beds were carried out by measuring the heat rate and the overall temperature differences across the heater at different operating conditions. The experiments were carried out in Q.V.F. glass column of 0.22 m inside diameter and 2.25 m height with an axially mounted cylindrical heater of 0.0367 m diameter and 0.5 m height. The fluidizing media were water as a continuous phase and air as a dispersed phase. Low density (Ploymethyl-methacrylate, 3.17 mm size) and high density (Glass beads, 2.31 mm size) particles were used as solid phase. The bed temperature profiles were measured axially and radially in the bed for different positions. Thermocouples were connecte

... Show More
View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
A review of ultra-high temperature materials for thermal protection system
...Show More Authors
Abstract<p>Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o</p> ... Show More
View Publication
Scopus (63)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Tue Dec 30 2025
Journal Name
Iraqi Journal Of Science
Blending a New Polymers Containing Oxadiazole Ring with PVA: Synthesis , Thermal Analysis and Biological Activity
...Show More Authors

This study focused on the synthesis of novel polymers incorporating the 1,3,4-oxadiazole ring. Four polymers were specifically prepared by blending polymers (6-9) with polyvinyl alcohol (PVA) in defined ratios, resulting in the formation of blended polymers (10-13). The synthesized polymers were characterized using Fourier Transform Infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H-NMR). The results showed that the structure aligned with the proposed synthetic polymers. Furthermore, the physical and thermal properties were studied using scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Additionally, the biological activity was examined against two s

... Show More
View Publication
Crossref
Publication Date
Tue Dec 30 2025
Journal Name
Iraqi Journal Of Science
Blending a New Polymers Containing Oxadiazole Ring with PVA: Synthesis , Thermal Analysis and Biological Activity
...Show More Authors

This study focused on the synthesis of novel polymers incorporating the 1,3,4-oxadiazole ring. Four polymers were specifically prepared by blending polymers (6-9) with polyvinyl alcohol (PVA) in defined ratios, resulting in the formation of blended polymers (10-13). The synthesized polymers were characterized using Fourier Transform Infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H-NMR). The results showed that the structure aligned with the proposed synthetic polymers. Furthermore, the physical and thermal properties were studied using scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Additionally, the biological activity was examined against two s

... Show More
View Publication
Crossref
Publication Date
Thu Sep 10 2020
Journal Name
Journal Of Advances In Mathematics
A Study of The Density Property in Module Theory
...Show More Authors

In this paper, there are two main objectives. The first objective is to study the relationship between the density property and some modules in detail, for instance; semisimple and divisible modules. The Addition complement has a good relationship with the density property of the modules as this importance is highlighted by any submodule N of M has an addition complement with Rad(M)=0. The second objective is to clarify the relationship between the density property and the essential submodules with some examples. As an example of this relationship, we studied the torsion-free module and its relationship with the essential submodules in module M.

Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Engineering And Applied Sciences
Effect Of Aluminum On The Structural, Optical, Electrical And Photovoltaic Properties Of ZnSe/n-Si Heterojunction Solar Cell
...Show More Authors

Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add

... Show More
Publication Date
Mon Sep 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Modeling and Simulation of the Boilers at Al-Mussaib Thermal Station
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Alexandria Engineering Journal
Impact of development on Baghdad’s urban microclimate and human thermal comfort
...Show More Authors

View Publication
Scopus (49)
Crossref (49)
Scopus Clarivate Crossref