Succinic acid is an essential base ingredient for manufacturing various industrial chemicals. Succinic acid has been acknowledged as one of the most significant bio based building block chemicals. Rapid demand for succinic acid has been noticed in the last 10 years. The production methods and mechanisms developed. Hence, these techniques and operations need to be revised. Recently, an omnibus rule for developing succinic acid is to find renewable carbohydrate Feedstocks. The sustainability of the resource is crucial to disintegrate the massive use of petroleum based-production. Accordingly, systematically reviewing the latest findings of bacterial production and related fermentation methods is critical. Therefore, this paper aims to study the latest research and assess the findings statistically comprehensively. The current review attempt is a step toward comprehending all the conditions surrounding succinic acid production from raw materials, microorganisms, and fermentation methods.
Photocatalyst composed of core/shell magnetic zincoxysulfide nanocomposite coated with sulfonated polyindole ([email protected]/SPID) has been prepared and used for simultaneous photocatalytic H2 production and Bisphenol A (BPA) degradation. XRD, FE-SEM, EDX, BET surface area, UV-vis DRS and VSM were used to characterize the synthesized nanocomposites. The photocatalytic performance was evaluated using batch reactor under visible light irradiation. The photocatalytic activity of [email protected]/SPID nanocomposite was revealed to exceed that of [email protected] nanocomposite due to the heterojunctions between SPID and [email protected] species. The results exhibited that the effect of BPA initial concentration was found to be effectual on the improvement
... Show MoreIndustrial development has recently increased, including that of plastic industries. Since plastic has a very long analytical life, it will cause environmental pollution, so studies have resorted to reusing recycled waste plastic (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, producing environmentally friendly load-bearing concrete masonry units (blocks) was considered where five concrete mixtures were compressed at the blocks producing machine. The cement content reduced from 400 kg/m3 (B-400) to 300 kg/m3 (B-300) then to 200 kg/m3 (B-200). While (B-380) was produced using 380 kg/m3 cement and 20 kg/m3 nano-sil
... Show MoreGlobal date palm production is steadily increasing and adopting technologies such as unmanned aerial vehicles (UAVs) and deep learning can reduce costs, save time, and improve productivity. To address this issue, the authors have proposed an innovative approach that uses UAVs for high-resolution aerial imaging. These images, collected by the Department of Computer Engineering at Al-Salam University in Baghdad and the Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, support improved orchard management, palm counting, and yield estimation. Precise spraying and pollination are also facilitated and accelerated, reducing overall cultivation costs. The proposed methodology involves processing captur
... Show MoreThis investigation aimed to explain the mechanism of MFCA by applying this method on air-cooled engine factory which was suffering from high production cost. The results of this study revealed that MFCA is a useful tool to identify losses and inefficiencies of the production process. It is found that the factory is suffering from high losses due to material energy and system losses. In conclusion, it is calculated that system losses are the highest among all the losses due to inefficient use of available production capacity.
S a mples of compact magnesia and alumina were evaporated
using CO2-laser .The
Processed powders were characterized by electron microscopy
and both scanning and transmission electron microscope. The results
indicated that the particle size for both powders have reduced largely
to 0.003 nm and 0.07 nm for MgO and Al2O3, with increasing in
shape sphericity.
Polyetheretherketone (PEEK) has favorable biomechanical properties to be used as an implant material. Unfortunately, it is hydrophobic and does not promote cellular adhesion, which could result in poor integration with bone tissue. Bio-functionalization of PEEK surface with osteogenic peptides derived from bone extracellular matrix proteins is an exciting approach to encourage bone formation around the implant. In the current study, bone-forming peptide-2 was immobilized on PEEK surface using two different methods, using dopamine and a diglycidyl ether as conjugate compounds, respectively. Peptide quantification test revealed that the two strategies resulted in the most amount of peptides were attached with 0.5 mM concentration and no furth
... Show MoreLasers, with their unique characteristics in terms of excellent beam quality, especially directionality and coherency, make them the solution that is key for many processes that require high precision. Lasers have good susceptibility to integrate with automated systems, which provides high flexibility to reach difficult zones. In addition, as a processing tool, a laser can be considered as a contact-free tool of precise tip that became attractive for high precision machining at the micro and nanoscales for different materials. All of the above advantages may be not enough unless the laser technician/engineer has enough knowledge about the mechanism of interaction between the laser light with the processed material. Several sequential phenom
... Show MoreWaste materials might be utilized in various applications, such as sustainable roller compacted concrete pavements (RCCP), to lessen the negative environmental consequences of construction waste. The impacts of utilizing (brick, thermostone, granite, and ceramic) powders on the mechanical characteristics of RCCP are investigated in this study. To achieve this, the waste materials were crushed, grounded, and blended before being utilized as filler in the RCCP. After the mixes were prepared, compressive strength, splitting tensile strength, flexural strength, water absorption, density, and porosity were all determined. According to the research results, adding some of these powders, mainly brick and granite powder, enhances the mechanical
... Show MoreThe presence of construction wastes such as clay bricks, glass, wood, plastic, and others in large quantities causes serious environmental problems in the world. Where these wastes can be used to preserve the natural resources used in construction and reduce the impact of this problem on the environment, it also works to reduce the problem of high loads of concrete blocks. Clay bricks aggregate (AB) can be recycled as coarse aggregate and replaced with volumetric proportions of coarse aggregate by ( 5% and 10%), as well as the use of clay brick powder (PB) by replacing its weight of cement (5% and 10%) and reduced in the manufacture of concrete blocks (blocks). Four mixtures will be prepared and tested to learn how to re
... Show More