Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreThe accumulation of sediment in reservoirs poses a major challenge that impacts the storage capacity, quality of water, and efficiency of hydroelectric power generation systems. Geospatial methods, including Geographic Information Systems (GIS) and Remote Sensing (RS), were used to assess Dukan Reservoir sediment quantities. Satellite and reservoir water level data from 2010 to 2022 were used for sedimentation assessment. The satellite data was used to analyze the water spread area, employing the Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) to enhance the water surface in the satellite imagery of Dukan Reservoir. The cone formula was employed to calculate the live storag
... Show MoreA problem of solid waste became in the present day common global problem among all countries, whether developing or developed countries, and can say that no country in the world today is immuning from this dilemma which must find appropriate solutions. The problem has reached a stage that can not ignore or delay, but has became a daily problem occupies the minds of ecologists, economists and politicians took occupies center front in the lists of priorities for the countries in terms of finding solutions to the rapid scientific and radical them. and that transport costs constitute an important component of total costs borne by the municipal districts in the process of disposal of solid waste, so any improvement in the
... Show MoreCoronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models
... Show MoreThe present study include a new developed method of analysis for determination of drug Spironolaction (SP) in some Pharmaceuticals by Spectrofluorometric method. Spironolaction was determined under optimal experimental condition that follows :- The excitation spectrum was (l=351 nm), the emmetion spectrum was (l=518 nm), pH=1, the suitable temperature for reaction 60oC and the optimal time less than (3) minute. The analysis and rang statistical data was:-Linear dynamic rang (1-10) ?g.ml-1, the detection limit (D.L = 0.023 ?g.ml-1), Molar absorptivity (? = 29875 liter mole-1 cm-1), Relative standard deviation (%RSD = 0.78), (%Erel = 3.3) and recovery (Rec = 96.6) percentage. Determination of Spironolactone was accomplished by two methods
... Show MoreThe aim of this research is to construct a three-dimensional maritime transport model to transport nonhomogeneous goods (k) and different transport modes (v) from their sources (i) to their destinations (j), while limiting the optimum quantities v ijk x to be transported at the lowest possible cost v ijk c and time v ijk t using the heuristic algorithm, Transport problems have been widely studied in computer science and process research and are one of the main problems of transport problems that are usually used to reduce the cost or times of transport of goods with a number of sources and a number of destinations and by means of transport to meet the conditions of supply and demand. Transport models are a key tool in logistics an
... Show MoreMultilateral wells require a sophisticated type of well model to be applied in reservoir simulators to represent them. The model must be able to determine the flow rate of each fluid and the pressure throughout the well. The production rate calculations are very important because they give an indication about some main issues associated with multi-lateral wells such as one branch may produce water or gas before others, no production rate from one branch, and selecting the best location of a new branch for development process easily.  
... Show MoreThe current research aimed to study the effect of an exercise program on physical-kinetic intelligence and the skills of dribbling and shooting in basketball among female students. The research community was composed of 102 female students in the second stage of the Physical Education and Sports Sciences College for Girls of Baghdad University, in the academic year 2021-2022. A total of 40 female students were the sample of the study: 20 female students in the control group and 20 female students in the experimental group. After the implementation of the exercise program, there were significant improvements from pre-tests to post tests in the two groups (control and experimental groups), in physical-kinetic intelligenc
... Show More