Preferred Language
Articles
/
alkej-814
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steering angle of a self-driving vehicle that is suitable to be applied to embedded automotive technologies with limited performance. Three well-known pre-trained models were compared in this study: AlexNet, ResNet18, and DenseNet121.

Transfer learning was utilized by modifying the final layer of pre-trained models in order to predict the steering angle of the vehicle. Experiments were conducted on the dataset collected from two different tracks. According to the study's findings, ResNet18 and DenseNet121 have the lowest error percentage for steering angle values. Furthermore, the performance of the modified models was evaluated on predetermined tracks. ResNet18 outperformed DenseNet121 in terms of accuracy, with less deviation from the center of the track, while DenseNet121 demonstrated greater adaptability across multiple tracks, resulting in better performance consistency.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Study on Flow Characteristics and Heat Transfer Behavior Around Different Geometrical Corrugated Extended Surfaces
...Show More Authors

Abstract

The current study presents numerical investigation of the fluid (air) flow characteristics and convection heat transfer around different corrugated surfaces geometry in the low Reynolds number region (Re<1000). The geometries are included wavy, triangle, and rectangular. The effect of different geometry parameters such as aspect ratio and number of cycles per unit length on flow field characteristics and heat transfer was estimated and compared with each other. The computerized fluid dynamics package (ANSYS 14) is used to simulate the flow field and heat transfer, solve the governing equations, and extract the results. It is found that the turbulence intensity for rectangular extended surface was larg

... Show More
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Evaluation of Convective Heat Transfer and Natural Circulation in an Evacuated Tube Solar Collector
...Show More Authors

The evacuated tube solar collector ETC is studied intensively and extensively by experimental and
theoretical works, in order to investigate its performance and enhancement of heat transfer, for Baghdad climate
from April 2011 till the end of March 2012. Experimental work is carried out on a well instrumented collector
consists of 16 evacuated tubes of aspect ratio 38.6 and thermally insulated tank of volume 112L. The relation
between convective heat transfer and natural circulation inside the tube is estimated, collector efficiency, effect of
tube tilt angles, incidence angle modifier, The solar heating system is investigated under different loads pattern (i.e
closed and open flow) to evaluate the heat loss coefficient

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Experimental Study of Natural Convection Heat Transfer in Confined Porous Media Heated From Side
...Show More Authors

Transient three-dimensional natural convection heat transfer due to the influences of heating from one side of an enclosure filled with a saturated porous media, whereas the opposite side is maintained at a constant cold temperature, and the other four sides are adiabatic, were investigated in the present work experimentally. Silica sand was used as a porous media saturated with distilled water filled in a cubic enclosure heated from the side,using six electrical controlled heaters, at constant temperatures of (60, 70, 80, 90, and 100oC). The inverse side cooled at a constant temperature of (24oC) using an aluminum heat exchanger, consisted of 15 channels feeded with constant temperature water. Eighty thermocouples were used to control t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Calculate of the Rate Constant of Electron Transfer in TiO2 – Safranine Dye System
...Show More Authors

         A theoretical calculations of the rate constant of electron transfer (ET) in a dye – semiconductor system with variety solvent are applied on system contains safranineT dye with TiO2 in many solvents like water, 1-propanol, Formamide, Acetonitrile and Ethanol.

    A matlap program has been written to evaluate many parameters such that, the solvent reorganization energy, effective free energy, activation free energy, coupling matrix element and the rate constant of electron transfer.

    The results of the rate constant of electron transfer calculated theoretically are in a good agreement with experimental and theoretical value

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Mechanical Engineering Research And Developments
Development of natural convection heat transfer in heat sink using a new fin design
...Show More Authors

Scopus (2)
Scopus
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
MIXED CONVECTIVE AND RADIATIVE HEAT TRANSFER IN A HORIZONTAL CONCENTRIC AND ECCENTRIC CYLINDRICAL ANNULI
...Show More Authors

A numerical investigation has been performed to study the effect of eccentricity on unsteady state, laminar aiding mixed convection in a horizontal concentric and eccentric cylindrical annulus. The outer cylinder was kept at a constant temperature
while the inner cylinder was heated with constant heat flux. The study involved numerical solution of transient momentum (Navier-Stokes) and energy equation using finite difference method (FDM), where the body fitted coordinate system (BFC) was
used to generate the grid mesh for computational plane. The governing equations were transformed to the vorticity-stream function formula as for momentum equations and to the temperature and stream function for energy equation.
A computer progra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Isi Bilimi Ve Teknigi Dergisi/ Journal Of Thermal Science And Technology,
Enhancement of natural convection heat transfer of pin fin having perforated with inclination angle
...Show More Authors

Scopus (4)
Scopus
Publication Date
Tue Dec 01 2020
Journal Name
Propulsion And Power Research
Heat transfer enhancement from heat sources using optimal design of combined fins heat-sinks
...Show More Authors

View Publication
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Nov 23 2020
Journal Name
Advanced Science
Association of Fluorescent Protein Pairs and Its Significant Impact on Fluorescence and Energy Transfer
...Show More Authors

View Publication
Scopus (7)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Thu Mar 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetics and Mass Transfer Study of Oleic Acid Esterification over Prepared Nanoporous HY zeolite
...Show More Authors

A mathematical model was proposed to study the microkinetics of esterification reaction of oleic acid with ethanol over prepared HY zeolite catalyst. The catalyst was prepared from Iraqi kaolin source and its properties were characterized by different techniques. The esterification was done under different temperature (40 to 70˚C) with 6:1 for molar ratio of ethanol to oleic acid and 5 % catalyst loading.

   The microkinetics study was done over two period of time each period was examined individually to calculate the reaction rate constant and activation energy. The impact of the mass transfer resistance to the reactant was also investigated; two different studies have been accomplished to do this purpose.

&nb

... Show More
View Publication Preview PDF