An indoor spraying robot is built in this research to solve numerous challenges associated with manual spraying. The mechanical, hardware and essential technologies used are all detailed and designed. The proposed spraying robot's conceptual design is split into two parts: hardware and software. The mechanical design, manufacturing, electrical, and electronics systems are described in the hardware part, while the control of the robot is described in the software section. This robot's kinematic and dynamic models were developed using three links that move in the x, y, and z directions. The robot was then designed using SolidWorks software to compute each connection's deflection and maximum stresses. The characteristics of the stepper motors, power screw and belt drive, are calculated. Finally, an Arduino-Nano controller and stepper motor actuators were used to build and run the robot. As a result, the robot was able to move smoothly vertically and horizontally, according to the findings of the experiments as shown in figures 22, 23, 24, and 25. These figures showed the position and velocity curves of the links of the robot.
Earth dams are constructed mainly from soil. A homogenous earth dam is composed of only one material. The seepage through such dams is quite high. Upstream impervious blanket is one of the methods used to control seepage through the dam foundations. Bennet's method is one of the commonly used methods to design an impervious upstream blanket. Design charts are developed relating the length of blanket, total reservoir head, total base width of the dam (excluding downstream drainage), the coefficient of permeability of the blanket material, blanket thickness, foundation thickness, and coefficient of permeability of the foundation soil, based on the equations governing the Bennet's method for a homogenous earth dam with a blanket of uniform
... Show MoreBackground: Odontogenic tumors are a diverse group of lesions with a variety of clinical behavior and histopathologic subtypes, from hamartomatous and benign to malignant. The study aimed to examine the clinical and pathological features of odontogenic tumors in Baghdad over the last 11 years (2011–2021). Materials and Methods: The present retrospective study analyzed all formalin-fixed, paraffin-embedded tissue blocks of patients diagnosed with an odontogenic tumor that were retrieved from archives at a teaching hospital/College of Dentistry in Baghdad University, Iraq, between 2011 and 2021. The diagnosis of each case was confirmed by examining the hematoxylin and eosin stained sections by two expert pathologists. Data from pati
... Show MoreBackground: This study aimed to determine the cephalometric values of tetragon analysis on a sample of Iraqi adults with normal occlusion. Material and methods: Forty digital true lateral cephalometric radiographs belong to 20 males and 20 females having normal dental relation were analyzed using AutoCAD program 2009. Descriptive statistics and sample comparison with Fastlicht norms were obtained. Results: The results showed that maxillary and mandibular incisors were more proclined and the maxillary/mandibular planes angle was lower in Iraqi sample than Caucasian sample. Conclusion: It's recommended to use result from this study when using tetragon analysis for Iraqis to get more accurate result.
A water resources management for earthen canal/stream is introduced through creating a combination procedure between a field study and the scientific analytical concepts that distinguish the hydraulic problems on this type of stream with using the facilities that are available in HECRAS software; aiming to point the solutions of these problems. Al Mahawil stream is an earthen canal which is subjected to periodic changes in cross sections due to scour, deposition, and incorrect periodic dredging processes due to growth of the Ceratophyllum plants and weeds on the bed and banks of the stream; which affect the characteristics of the flow. This research aims to present a strategy of water resources management through a field study that conducte
... Show MoreLiquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the