Preferred Language
Articles
/
alkej-739
Modeling and Simulation for Performance Evaluation of Optical Quantum Channels in Quantum key Distribution Systems
...Show More Authors

In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 protocol based on polarizing encoding with consideration of the optical fiber and free-space quantum channel imperfections and losses by estimating the quantum bit error rate and final secure key. This work shows a general repeatable modeling process for significant performance evaluation. The most remarkable result that emerged from the simulated data generated and detected is that the modeling process provides guidance for optical quantum channels design and characterization for other quantum key distribution protocols.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Effects of Welding Parameters on Temperature Distribution and Tensile Strength of AA6061-T6 Welded by Friction Stir Welding
...Show More Authors

The present research aims to study the effect of friction stir welding (FSW) parameters on temperature distribution and tensile strength of aluminum 6061-T6. Rotational and traverse speeds used were (500,1000,1400 rpm) and (14,40,112 mm/min) respectively. Results of mechanical tests showed that using 500rpm and 14mm/min speed give the best strength. A three- dimensional fully coupled thermal-stress finite element model via ANSYS software has been developed. The Rate dependent Johnson-Cook relation was utilized for elasto-plastic work deformations. Heat-transfer is formulated using a moving heat source, and later used the transient temperature outputs from the thermal analysis to determine equivalent stresses in the welde

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Vapor-Liquid-Liquid Equilibrium (VLLE) Data for the Systems Ethyl acetate + Water, Toluene + Water and Toluene + Ethyl acetate + Water at 101.3 kPa. Using Modified Equilibrium Still
...Show More Authors

Isobaric Vapor-Liquid-Liquid equilibrium data for the binary systems ethyl acetate + water, toluene + water and the ternary system toluene + ethyl acetate + water were determined by a modified equilibrium still, the still consisted of a boiling and a condensation sections supplied with mixers that helped to correct the composition of the recycled condensed liquid and the boiling temperature readings in the condensation and boiling sections respectively. The VLLE data where predicted and correlated using the Peng-Robinson Equation of State in the vapor phase and one of the activity coefficient models Wilson, NRTL, UNIQUAC and the UNIFAC in the liquid phase and also were correlated using the Peng-Robinson Equation of State in both the vapo

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Structural and Optical Properties of Cobalt-Doped Zinc Oxide Thin Films Prepared By Spray Pyrolysis Technique
...Show More Authors

Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Annealing temperature effect on the structural and optical properties of thermally deposited nanocrystalline CdS thin films
...Show More Authors

A nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 07 2019
Journal Name
Iraqi Journal Of Laser
Synthesis Characterization and Optical Properties of Nanostructured Zinc Sulfide Thin Films Obtained by Spray Pyrolysis Deposition
...Show More Authors

In this work, nanostructure zinc sulfide (ZnS) thin films at temperature of substrate 450 oC and thickness (120) nm have been produced by chemical spray pyrolysis method. The X-Ray Diffraction (XRD) measurements of the film showed that they have a polycrystalline structure and possessed a hexagonal phase with strong crystalline orientation of (103). The grain size was measured using scanning electron microscope (SEM) which was approximately equal to 80 nm. The linear optical measurements showed that ZnS nanostructure has direct energy gap. Nonlinear optical properties experiments were performed using Q-switched 532 nm Nd:YAG laser Z-scan system. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) estimated for Z

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of ZnO doped Mg thin films deposited by pulse laser deposition (PLD)
...Show More Authors

This paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Iraqi Journal Of Physics
Annealing effects on optical and structural properties of chromium oxide thin film deposited by PLD technique
...Show More Authors

Optical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Study the Structural and Optical Properties of Cr doped SnO2 Nanoparticles Synthesized by Sol-Gel Method
...Show More Authors

View Publication
Scopus (56)
Crossref (50)
Scopus Clarivate Crossref
Publication Date
Fri Feb 13 2026
Journal Name
Journal Of Baghdad College Of Dentistry
In-Vitro evaluation of load-deflection characteristics and force levels of nickel titanium orthodontic archwires
...Show More Authors

Background: Nickel-titanium (NiTi) archwires have become increasingly popular because of their ability to release constant light forces, which are especially useful during initial alignment and leveling phase. The aim of the present study was to investigate and compare the load–deflection characteristics of four commercially available NiTi archwires. Materials and methods: 200 NiTi 0.014, 0.016, 0.018, 0.016x0.022 and 0.019x0.025-inch nickel–titanium archwires from four different manufacturers (3M, Ortho Technology, Jiscop and Astar) were tested. The load-deflection properties of these archwires were evaluated by a full arch bending test in both palatal and gingival directionsat 37°C temperature using a universal material t

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 17 2024
Journal Name
Veterinary World
Characterization of food color additives and evaluation of their acute toxicity in Wistar albino rats
...Show More Authors

Background and Aim: The use of food dyes can cause certain diseases, such as anemia and indigestion, along with other disorders, tumors, and even cancer. Therefore, this study aimed to determine the chemical nature and toxicity of some commercial dyes locally used in processed foods compared with standard food dyes. Materials and Methods: Three types of standard and commercial food color additives (Sunset Yellow, Tartrazine, and Carmoisine) were extensively examined. The chemical structures and functional groups of the dyes were evaluated by Fourier-transform infrared (FTIR) spectroscopy. The melting temperatures of the dyes were also determined by chemical thermal analysis. The acute toxicity test to evaluate the standard and commercial

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref