Preferred Language
Articles
/
alkej-739
Modeling and Simulation for Performance Evaluation of Optical Quantum Channels in Quantum key Distribution Systems

In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 protocol based on polarizing encoding with consideration of the optical fiber and free-space quantum channel imperfections and losses by estimating the quantum bit error rate and final secure key. This work shows a general repeatable modeling process for significant performance evaluation. The most remarkable result that emerged from the simulated data generated and detected is that the modeling process provides guidance for optical quantum channels design and characterization for other quantum key distribution protocols.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 10 2010
Journal Name
Iraqi Journal Of Laser
Generation of Weak Coherent Pulses for Quantum Cryptography Systems

This work is a trial to ensure the absolute security in any quantum cryptography (QC) protocol via building an effective hardware for satisfying the single-photon must requirement by controlling the value of mean photon number. This was approximately achieved by building a driving circuit that provide very short pulses (≈ 10 ns) for laser diode -LD- with output power of (0.7-0.99mW) using the available electronic components in local markets. These short pulses enable getting faint laser pulses that were further attenuated to reach mean photon number equal to 0.08 or less.

View Publication Preview PDF
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Quantum Key Distribution and Chaos Bandwidth Effects on Impact Security of Quantum Communications

The influence of bias current on the bandwidth of chaotic signals in semiconductor lasers by optical feedback has been studied experimentally and numerically. The measured data reveal that the bandwidth increase when the system becomes chaotic and this chaotic signal has a broadband spectrum so it can be used as a carrier for the quantum key. Mixing chaotic signal and quantum key make a very small change in chaotic bandwidth that does not affect the security of data transmitted.

Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Journal Of Optical Technology
Random signal generation and synchronization in lab-scale measurement device independent–quantum key distribution systems

In this paper, a random transistor-transistor logic signal generator and a synchronization circuit are designed and implemented in lab-scale measurement device independent–quantum key distribution systems. The random operation of the weak coherent sources and the system’s synchronization signals were tested by a time to digital convertor.

Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jun 10 2009
Journal Name
Iraqi Journal Of Laser
Real Time Quantum Bit Error Rate Performance Test for a Quantum Cryptography System Based on BB84 protocol

In this work, the performance of the receiver in a quantum cryptography system based on BB84 protocol is scaled by calculating the Quantum Bit Error Rate (QBER) of the receiver. To apply this performance test, an optical setup was arranged and a circuit was designed and implemented to calculate the QBER. This electronic circuit is used to calculate the number of counts per second generated by the avalanche photodiodes set in the receiver. The calculated counts per second are used to calculate the QBER for the receiver that gives an indication for the performance of the receiver. Minimum QBER, 6%, was obtained with avalanche photodiode excess voltage equals to 2V and laser diode power of 3.16 nW at avalanche photodiode temperature of -10

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 12 2024
Journal Name
Semiconductor Physics, Quantum Electronics And Optoelectronics
Numerical study of single-layer and interlayer grating polarizers based on metasurface structures for quantum key distribution systems

Polarization is an important property of light, which refers to the direction of electric field oscillations. Polarization modulation plays an essential role for polarization encoding quantum key distribution (QKD). Polarization is used to encode photons in the QKD systems. In this work, visible-range polarizers with optimal dimensions based on resonance grating waveguides have been numerically designed and investigated using the COMSOL Multiphysics Software. Two structures have been designed, namely a singlelayer metasurface grating (SLMG) polarizer and an interlayer metasurface grating (ILMG) polarizer. Both structures have demonstrated high extinction ratios, ~1.8·103 and 8.68·104 , and the bandwidths equal to 45 and 55 nm for th

... Show More
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Apr 23 2018
Journal Name
International Journal Of Quantum Information
Key rate estimation of measurement-device-independent quantum key distribution protocol in satellite-earth and intersatellite links

In this work, an estimation of the key rate of measurement-device-independent quantum key distribution (MDI-QKD) protocol in free space was performed. The examined free space links included satellite-earth downlink, uplink and intersatellite link. Various attenuation effects were considered such as diffraction, atmosphere, turbulence and the efficiency of the detection system. Two cases were tested: asymptotic case with infinite number of decoy states and one-decoy state case. The estimated key rate showed the possibility of applying MDI-QKD in earth-satellite and intersatellite links, offering longer single link distance to be covered.

Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Feb 10 2016
Journal Name
Scientific Reports
Experimental demonstration on the deterministic quantum key distribution based on entangled photons

As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based

... Show More
Scopus (16)
Crossref (15)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Apr 18 2019
Journal Name
Iraqi Journal Of Science
Simulation of Optical Energy Gap for Synthesis Carbon Quantum Dot by Laser Ablation

Fluorescent Carbon Quantum Dots (CQDS) are a new kind of carbon nanoparticles that have appeared recently and have collected much interest as potential competitors to conventional semiconductor quantum dots (QDs). In addition to their comparable fluorescent properties, CQDs have the desired specifications of environmental friendliness, low toxicity, simple synthetic routes, low cost and surface passivation The functionalization of CQDS allow the control of their physicochemical properties. The main aim of this kind of researches is to account the variables that cannot be measured directly from practical experiments. Therefore, the work here is focused on the account energy gap of bulk (Eg bulk) by theoretically method (simulation) after

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Modeling and Simulation of Sensorless Speed Control of a Buck Converter Controlled Dc Motor

This paper investigate a sensorless speed control of a separately excited dc motor fed from a buck type dc-dc converter. The control system is designed in digital technique by using a two dimension look-up table. The performance of the drive system was evaluated by digital simulation using Simulink toolbox of Matlab.

View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
International Journal Of Research And Reviews In Computer Science
Detection of the photon number splitting attack by using decoy states quantum key distribution system

The goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.