Prosthetic is an artificial tool that replaces a member of the human frame that is absent because of ailment, damage, or distortion. The current research activities in Iraq draw interest to the upper limb discipline because of the growth in the number of amputees. Thus, it becomes necessary to increase researches in this subject to help in reducing the struggling patients. This paper describes the design and development of a prosthesis for people able and wear them from persons who have amputation in the hands. This design is composed of a hand with five fingers moving by means of a gearbox ism mechanism. The design of this artificial hand has 5 degrees of freedom. This artificial hand works based on the principle of under actuated system. The used motor is 6V Polulu high-power carbon brush micro metal gearmotor with gear ratio equal to 50:1. The motor was chosen due to its compactness and cheapness. The hand manufacturing process was done using a 3D printer and using polylactic acid material. Numbers of experiments were accomplished using the designed hand for gripping objects. Initially, the electromyography signal (EMG) was recorded when the muscle contracted in one second, two seconds, three seconds. The synthetic hand was able to produce a range of gestures and grasping for objects.
In this study , Iraqi Bentonite clay was used as a filler for polyvinyl chloride polymer. Bentonite clay was prepared as a powder for some certain particle size ,followed by calcinations process at (300,700,900) OC ,then milled and sieved. The selected sizes were D ~75 µm and D ~150. After that polyvinyl Al-Cohool solution prepared and used as a coated layer covered the Bentonite powder before applied as a filler ,followed by drying , milling and sieving for limited recommend sizes. polyvinyl chloride solutions were prepared and adding of modified Bentonite power at certain quantities were followed .Sheet of these variables on the mechanical and thermal properties of the prepared reinforced particular polyvinyl chloride composite
... Show MoreContamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show MoreIn the present study, free convection heat and mass transfer of fluid in a square packed bed enclosure is numerically investigated. For the considered geometrical shape, the left vertical wall of enclosure was assumed to be kept at high temperature and concentration while the opposite wall was kept at low temperature and concentration with insulating both the top and bottom walls of enclosure. The Brinkman– Forchheimer extended Darcy model was used to solve the momentum equations, while the energy equations for fluid and solid phases were solved by using the local thermal non-equilibrium (LTNE) model.Computations are performed for a range of the Darcy number from 10-5 to 10-1, the porosity from 0.5 to 0.9, and buoyancy ratio from -15 t
... Show MoreThe removal of fluoride ions from aqueous solution onto algal biomass as biosorbent in batch and continuous fluidized bed systems was studied. Batch system was used to study the effects of process parameters such as, pH (2-3.5), influent fluoride ions concentration (10- 50 mg/l), algal biomass dose (0–1.5 g/ 200 ml solution), to determine the best operating conditions. These conditions were pH=2.5, influent fluoride ions concentration= 10 mg/l, and algal biomass dose=3.5 mg/l. While, in continuous fluidized bed system, different operating conditions were used; flow rate (0.667- 0.800 l/min), bed depth (8-15 cm) corresponded to bed weight of (80- 150 g). The results show that the breakthrough time increases with the inc
... Show MoreIntroduction The Hybrid Gamma Camera (HGC) is being developed to enhance the localisation of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. Purpose To assess the capability of the HGC, a lymph-node-contrast (LNC) phantom was constructed for an evaluative study simulating medical scenarios of varying radioactivity concentration and SLN size. Materials and methods The phantom was constructed using two methyl methacrylate PMMA plates (8 mm thick). The SLNs were simulated by drilling circular wells of diameters ranging between 10 mm and 2.5 mm (16 wells in total) in one plate. These simulated SLNs were placed underneath scattering material with thicknesses ranging between 5 mm
... Show MoreA procedure, depending on the derivatization and determination of aniline was depicted andvalidated in this study. 8-hydroxyquinoline (8-HQ) was used as the derivatizing agent for thedetermination of aniline. An optimization study was performed for the derivatization reaction, i.e.,the diazonium coupling reaction, the optimum parameters were as follows: 22 mM of hydrochloricacid, 54mM of sodium hydroxide, and 1.8mM of sodium nitrate. The optimization study of themethod of cloud point extraction (CPE) revealed that the extraction solvent was 0.5 ml of Triton X-100, the optimum temperature was 90 °C, and the incubation time was 25 min. The linearity,correlation coefficients, molar absorptivities, and limits of detection were improved using t
... Show MoreLaser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte
Background: The association between facial types and dental arches forms has considerable implications in orthodontic diagnosis and treatment planning. The aim was to establish the maxillary and mandibular dental arches width and length in skeletal and dental class II division 1 and class III malocclusion groups, find out the most frequent dental arch form and facial type and the association between them and to check the gender differences. Materials and Methods: Frontal and lateral facial photographs and maxillary and mandibular occlussal photographs for 90 iraqi subjects with age 18-25 years old (45 males and 45 females) divided equally into three groups, the 1st group with class II division 1malocclusion (overjet more than 3mm but less t
... Show More
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show More