Preferred Language
Articles
/
alkej-66
Mechanical Properties of Burnished Steel AISI 1008
...Show More Authors

Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue test showed that improvement in fatigue limit, where the highest fatigue limit was obtained at (1mm feed, 1200rpm speed) in burnishing process which was (169 Mpa). The hardness results, showed increasing feed and speed values lead to increasing the hardness. The burnishing process reduces surface roughness by producing accurate and better surface finish. The best surface fineness of metal at (1mm feed and 1200 rpm speed) was 0.11 μm.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Natural Gas Science And Engineering
Experimental determination of hydrate phase equilibrium for different gas mixtures containing methane, carbon dioxide and nitrogen with motor current measurements
...Show More Authors

Hydrate dissociation equilibrium conditions for carbon dioxide + methane with water, nitrogen + methane with water and carbon dioxide + nitrogen with water were measured using cryogenic sapphire cell. Measurements were performed in the temperature range of 275.75 K–293.95 K and for pressures ranging from 5 MPa to 25 MPa. The resulting data indicate that as the carbon dioxide concentration is increased in the gas mixture, the gas hydrate equilibrium temperature increases. In contrast, by increasing the nitrogen concentration in the gas mixtures containing methane or carbon dioxide decreased the gas hydrate equilibrium temperatures. Furthermore, the cage occupancies for the carbon dioxide + methane system were evaluated using the Van der Wa

... Show More
Scopus (93)
Crossref (92)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Asian Journal Of Chemistry
Levels and Distribution of Trace Metals in Surface Soils of Al-Diwaniya, Iraq
...Show More Authors

In this work, monitoring of monthly variation (from May 2016 to October 2016) in the concentration of the metals (Co, Zn, Cd, Pb, Ni and Fe) from Al-Diwaniya city of Iraq. Investigation about the pollution with these metals was achieved from five selected sites locate in study area by flame atomic absorption spectroscopy. The results showed a wide variation in the levels of heavy metals from site to site and from month to month. A total of 180 surface soil samples were analyzed to detecting the pollution with selected samples. The resultsshowed that the highest concentration with Ni was 6.290 mg kg-1 while the lowest concentration detected with Ni was 0.080 mg kg-1. The results of pollution index (enrichment factor, contamination factor, po

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Ecological Engineering & Environmental Technology
Elimination of Methyl Orange Dye with Three Dimensional Electro-Fenton and Sono-Electro-Fenton Systems Utilizing Copper Foam and Activated Carbon
...Show More Authors

This study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Heliyon
Effect of plasma surface treatment of three different CAD/CAM materials on the micro shear bond strength with resin cement (A comparative in vitro study)
...Show More Authors

Objectives: This study aimed to evaluate and compare the effect of plasma treatment versus conventional treatment on the micro shear bond strength (μSBS), surface roughness, and wettability of three different CAD/CAM materials. Materials and methods: Sixty cylindrical specimens (5 mm diameter ×3 mm height) were prepared from three different CAD/CAM materials: Group A: Zirconia, Group B: Lithium disilicate, and Group C: Resin nano-ceramic. Each group was subdivided into two subgroups according to surface treatment used: Subgroup I: Conventional treatment, zirconia was sandblasted with Al2O3, while lithium disilicate and resin nano-ceramic were etched with hydrofluoric acid. Subgroup II: Plasma treatment, the surface of each material was tr

... Show More
View Publication Preview PDF
Scopus (19)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Effect of Solid Loading on Carbon Dioxide Absorption in Bubble Column
...Show More Authors

In the present work experiments were conducted to study  the effect of solid loading (1,5 and 9 vol.%) on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h) and absorbent concentration (caustic soda)( 0.1,0.5 and 1 M  ). Activated carbon and alumina oxide (Al2O3) are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfac

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Engineering
Roughness Effect on Thermo-Elasto-Hydrodynamic Performance of a 170ᵒ -Arc Partial Journal Bearing
...Show More Authors

In the current analysis, the effects of circumferential scratches along the inner surface of a 170ᵒ -arc partial journal bearing has been numerically investigated. Their impact on the thermo-elasto-hydrodynamic performance characteristics, including maximum pressure, temperature, deformation, and stress, has been examined thoroughly. The ANSYS Fluent CFD commercial code was employed to tackle the iterative solution of flow and heat transfer patterns in the fluid film domain. They are then applied to the ANSYS Static Structure solver to compute the deformation and stress resulted in the solid bearing zone. A wide range of operating conditions has been considered, including the eccentricity ratio ( ) and scratch depth (

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Iraqi Journal Of Physics
Studying the Impact Strength of Layered Denture Base Resin
...Show More Authors

This paper displays the effect of uncoated and coated chopped carbon fibers with alumina Al2O3 or Tri calcium phosphate (TCP) on the impact strength of acrylic poly methyl methacrylate (PMMA) denture base resin. To improve bonding between carbon fibers and coating materials powders, the surface of carbon fibers has been treated with Para amino benzoic acid (C9H10N2O3) and poly vinyl alcohol (PVA) was also used. The morphology of the coating layers has been examined by field emission scanning electron microscope (FE-SEM). From the results, PMMA reinforced with uncoated chopped carbon fiber has high impact strength value but still have bad aesthetic.  Samples prepared b

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Aug 05 2019
Journal Name
Journal Of Engineering
Behaviour of Segmental Concrete Beams Reinforced by Pultruded CFRP Plates: an Experimental Study
...Show More Authors

Research aims to develop a novel technique for segmental beam fabrication using plain concrete blocks and externally bonded Carbon Fiber Reinforced Polymers Laminates (CFRP) as a main flexural reinforcement. Six beams designed an experimentally tested under two-point loadings. Several parameters included in the fabrication of segmental beam studied such as; bonding length of carbon fiber reinforced polymers, the surface-to-surface condition of concrete segments, interface condition of the bonding surface, and thickness of epoxy resin layers. Test results of the segmental beams specimens compared with that gained from testing reinforced concrete beam have similar dimensions for validations. The results show the effectiven

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Adaptive Sliding Mode Controller for Servo Actuator System with Friction
...Show More Authors

This paper addresses the use of adaptive sliding mode control for the servo actuator system with friction. The adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly, the magnitude of control effort is reduced to the minimal admissible level defined by the conditions for the sliding mode to exist. Secondly, the upper bounds of uncertainties are not required to be known in advance. Therefore, adaptive sliding mode control method can be effectively implemented. The numerical simulation via MATLAB 2014a for servo actuator system with friction is investigated to confirm the effectiveness of the proposed robust adaptive sliding mode control scheme. The results clarify, after

... Show More
View Publication Preview PDF
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Modeling and Simulation of Copper Removal from the Contaminated Soil by a Combination of Adsorption and Electro-kinetic Remediation
...Show More Authors

Electro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu

... Show More
View Publication Preview PDF
Crossref (3)
Crossref