Preferred Language
Articles
/
alkej-631
Free Convective Heat Transfer with Different Sections Lengths Placed at the Exit of a Vertical Circular Tube subjected to a Constant Heat Flux
...Show More Authors

A free convective heat transfer from the inside surface of a uniformly heated vertical circular tube has been experimentally investigated under a constant wall heat flux boundary condition for laminar air flow in the ranges of RaL from 6.9108 to 5109. The effect of the different sections (restrictions) lengths placed at the exit of the heated tube on the surface temperature distribution, the local and average heat transfer coefficients were examined. The experimental apparatus consists of aluminum circular tube with 900 mm length and 30 mm inside diameter (L/D=30). The exit sections (restrictions) were included circular tubes having the same inside diameter as the heated tube but with different lengths of 600 mm (L/D=20), 900 mm (L/D=30), 1200 mm (L/D=40), 1500 mm (L/D=50), and 1800 mm (L/D=60). It was found that the surface temperature along the tube axial distance would be higher for restriction with length of 1800 mm (L/D=60) and it would be smaller for the restriction with length of 1200 mm (L/D=40). The results show that the local Nux and average Nusselt number were higher values for the restriction with length of 1200 mm (L/D=40) and smaller values for the restriction with length of 1800 mm (L/D=60). The results were correlated with empirical equations and presented as Logagainst Log for each case investigated and a general empirical equation was proposed for all cases.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 23 2022
Journal Name
Frontiers In Energy Research
Evaluation of T-Shaped Fins With a Novel Layout for Improved Melting in a Triple-Tube Heat Storage System
...Show More Authors

The effects of T-shaped fins on the improvement of phase change materials (PCM) melting are numerically investigated in vertical triple-tube storage containment. The PCM is held in the middle pipe of a triple-pipe heat exchanger while the heat transfer fluid flows through the internal and external pipes. The dimension effects of the T-shaped fins on the melting process of the PCM are investigated to determine the optimum case. Results indicate that while using T-shaped fins improves the melting performance of the PCM, the improvement potential is mainly governed by the fin’s body rather than the head. Hence, the proposed T-shaped fin did not noticeably improve melting at the bottom of the PCM domain; additionally, a flat fin is ad

... Show More
View Publication
Scopus (32)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Wed Oct 31 2018
Journal Name
Heat Transfer-asian Research
Comparative study on heat transfer enhancement of nanofluids flow in ribs tube using CFD simulation
...Show More Authors

View Publication
Scopus (20)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Heat Transfer Analysis of Conventional Round Tube and Microchannel Condensers in Automotive Air Conditioning System
...Show More Authors

In this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Propulsion And Power Research
Heat transfer enhancement from heat sources using optimal design of combined fins heat-sinks
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Non-Darcian-Bènard Double Diffusive Magneto-Marangoni Convection in a Two Layer System with Constant Heat Source/Sink
...Show More Authors

The problem of non-Darcian-Bènard double diffusive magneto-Marangoni convection   is considered in a horizontal infinite two layer system. The system consists of a two-component fluid layer placed above a porous layer, saturated with the same fluid with a constant heat sources/sink in both the layers, in the presence of a vertical magnetic field.   The lower porous layer is bounded by rigid boundary, while the upper boundary of the fluid region is free with the presence of Marangoni effects.  The system of ordinary differential equations obtained after normal mode analysis is solved in a closed form for the eigenvalue and the Thermal Marangoni Number (TMN) for two cases of Thermal Boundary Combinations (TBC); th

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Tue Mar 31 2020
Journal Name
International Journal Of Heat And Technology
Enhancement of Natural Convection Heat Transfer of Hybrid Design Heat Sink
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Apr 01 2014
Journal Name
International Communications In Heat And Mass Transfer
Determination of a time-dependent thermal diffusivity and free boundary in heat conduction
...Show More Authors

View Publication
Scopus (18)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Numerical Analysis of Fluid Flow and Heat Transfer by Forced Convection in Channel with one-sided Semicircular Sections and Filled with Porous Media
...Show More Authors

This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer  in two cases ,the first: cha

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Mass Transfer Correlations for a Rotating Cylinder Electrode under lsothermal and Controlled Heat Transfer Condition
...Show More Authors

Mass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Influence of Rotation and Inclined Magnetic Field with Mixed Convective Heat and Mass Transfer in an Inclined Symmetric Channel on Peristaltic Flow with Slip Conditions
...Show More Authors

     In paper, we study the impact of the rotationn inclined magnetic felid and inclined symmetric channel with slip condition on peristaltic transport using incompressible non-Newtonian fluid. Slip conditions for the concentration and heat transfer are considered. We use the conditions on the fluid, namely infinite wavelength and low - Reynolds number to simplify the governed equations that described - motion flow, energy and concentration. These equations ofroblem are solved by the perturbation technique and restricted the number of Bingham to a small value to find the final expression of the stream function. The Bingham number, Brinkman number, Soret number, Dufour number, temperature, Hartman number and other parameters are teste

... Show More
View Publication Preview PDF
Scopus Crossref