The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without tracking system (case 2). The experimental results showed that the average solar radiation falling on the PTSC prototype in the two cases during the same time was 854 and 701 watt/m2, respectively, which means an increase in the solar radiation about 21.8 % when using tracking system. It was found that the average useful heat gain output of solar collector was equal to (376.2, 252.6 watt) for the two cases, respectively, so there was an increase of about 48.9 % when using the tracking system. Also, the average thermal efficiency of the PTSC was found to be (20.7, 26.5 %) for the two cases, respectively, which means an increase in the average efficiency by 28% with use of tracking system compared to the fixed case.
The main objective of the present work is to find a method increases the efficiency of the airfoil that is used for blade in wind turbine, wing in aircraft, propeller and helicopter (like NACA 4412). By overcoming the separation of flow at high angle of attacks, a slotted airfoil had been used and solved numerically through connecting the pressure side in the bottom surface with the suction side in the top surface of the airfoil to energize the separated flow. Slot exit, width and slope were considered as a parameters of slot configuration to determine the effective design of consideration. Reynolds number was taken as [1.6 x106 ] and the angle of attacks were ranged from (0o - 20o ). The numerical solution with Ansys Fluent commercial prog
... Show MoreA computerized investigation has been carried out on the design of six electrodes electrostatic lenses used in electron gun application. The Finite-Element Method (FEM) was used in the solution of Laplace equation for determine the axial potential distribution. The electron trajectory under zero magnification condition. The optical properties, spherical and chromatic aberrations, the object and image focal length and object and image position are calculated. A very good futures for the electron gun with these lenses have been computed where are a beam current of 8.7*10-7A can be supplied using cathode tip of radius 10nm.
As a result of the development and global openness and the possibility of companies providing their services outside their spatial boundaries that were determined by them, and the transformation of the world due to the development of the means of communication into a large global market that accommodates all products from different regions and of the same type and production field, competition resulted between companies, and the race to obtain the largest market share It ensures the largest amount of profits, and it is natural for the advertising promotion by companies for their product to shift from an advertisement for one product to a competitive advertisement that calls on the recipient to leave the competing product and switch to it
... Show MoreThe finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi
In the midst of rapid changes and difficultiesand the tough competition faced by the Iraqi banks, it has become necessary to focus on a significant aspect of administrative work; that is strategic planning and the key role of implementation within this process in improving the banking service quality. It has emerged as a critical and main competitive weapon for distinguishing the services provided by banks from each other in an effort to participate in increasing market share of the bank in question in question; in its growth, continuation and profit increase.
The research has addressed the relation between the independent variable (implementation within strategic planning), and the dependent variable (banking service quality and
... Show MoreWithin this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on
... Show MoreThis work is concerned with building a three-dimensional (3D) ab-initio models that is capable of predicting the thermal distribution of laser direct joining processes between Polymethylmethacrylate (PMMA) and stainless steel 304(st.st.304). ANSYS® simulation based on finite element analysis (FEA) was implemented for materials joining in two modes; laser transmission joining (LTJ) and conduction joining (CJ). ANSYS® simulator was used to explore the thermal environment of the joints during joining (heating time) and after joining (cooling time). For both modes, the investigation is carried out when the laser spot is at the middle of the joint width, at 15 mm from the commencement point (joint edge) at traveling time of 3.75 s. Process par
... Show MoreVehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show More
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
Fresh water production from saline or waste water utilizing solar stills is the secured future approach in water industry with low cost and no environmental pollution accompanied with low productivity. In this work, the effect of inserting different available materials in a passive Single Slope Solar SSS stills on their productivity is accomplished. Side by side tests are performed on a conventional still, and three SSS stills inserted with carbon filter media, Copper wire mesh, and Cellulose sheets. All these stills are symmetrical in dimensions with 0.5 m2 base area tested for 20mm water level. The stills have been manufactured, instrumented, and tested in July 2021 under DhiQar-Iraq climate conditions (latitude 31.2° N, longitude 46.34
... Show More