The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without tracking system (case 2). The experimental results showed that the average solar radiation falling on the PTSC prototype in the two cases during the same time was 854 and 701 watt/m2, respectively, which means an increase in the solar radiation about 21.8 % when using tracking system. It was found that the average useful heat gain output of solar collector was equal to (376.2, 252.6 watt) for the two cases, respectively, so there was an increase of about 48.9 % when using the tracking system. Also, the average thermal efficiency of the PTSC was found to be (20.7, 26.5 %) for the two cases, respectively, which means an increase in the average efficiency by 28% with use of tracking system compared to the fixed case.
Abstract
In this research we study the wavelet characteristics for the important time series known as Sunspot, on the aim of verifying the periodogram that other researchers had reached by the spectral transform, and noticing the variation in the period length on one side and the shifting on another.
A continuous wavelet analysis is done for this series and the periodogram in it is marked primarily. for more accuracy, the series is partitioned to its the approximate and the details components to five levels, filtering these components by using fixed threshold on one time and independent threshold on another, finding the noise series which represents the difference between
... Show MoreHeat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically and experimentally her in. Solar chimney was designed, manufactured and tested by selecting different positions of air entrance namely: bottom entrance, side entrance, and both side and bottom entrances. The effect of integrating the chimney with paraffin (phase change material) on its thermal behavior has been also investigated. CFD analysis based on finite volume method is used to predict the thermal performance, and fluid flow in two-dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation, and inclination angle. Experimental results show that a solar chi
... Show MoreIn our work present, the application of strong-Lensing observations for some gravitational lenses have been adopted to study the geometry of the universe and to explain the physics and the size of the quasars. The first procedure was to study the geometrical of the Lensing system to determine the relation between the redshift of the gravitational observations with its distances. The second procedure was to compare between the angular diameter distances "DA" calculated from the Euclidean case with that from the Freedman models, then evaluating the diameter of the system lens. The results concluded that the phenomena are restricted to the ratio of distance between lens and source with the diameter of the lens noticing.
This work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcem
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show More