The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without tracking system (case 2). The experimental results showed that the average solar radiation falling on the PTSC prototype in the two cases during the same time was 854 and 701 watt/m2, respectively, which means an increase in the solar radiation about 21.8 % when using tracking system. It was found that the average useful heat gain output of solar collector was equal to (376.2, 252.6 watt) for the two cases, respectively, so there was an increase of about 48.9 % when using the tracking system. Also, the average thermal efficiency of the PTSC was found to be (20.7, 26.5 %) for the two cases, respectively, which means an increase in the average efficiency by 28% with use of tracking system compared to the fixed case.
Electronic properties including (bond length, energy gap, HOMO, LUMO and density of state) as well as spectroscopic properties such like infrared, Raman scattering, force constant, reduced mass and longitu- dinal optical mode as a function of frequency are based on size and concentration of the molecular and nanostructures of aluminum nitride ALN, boron nitride BN and AlxB7-XN7 as nanotubes has calculated using Ab –initio approximation method dependent on density functional theory and generalized gradient approximation. The geometrical structure are calculated by using Gauss view 05 as a complementary program. Shows the energy gap of ALN, BN and AlxB7-XN7 as a function of the total number of atoms , start from smallest molecule to reached
... Show MoreThe acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show MoreThis study aims to identify both the importance of using (LinkedIn) and its drawbacks for researchers and specialists in the field of information and knowledge technologies. The study relied mainly on the statistical method (analytical method) from the collection of data tools (questionnaire) that was distributed electronically (Google Forms) to the sample community of (55) instructors. The feedback received illustrates that (46) instructors among those who participated in the questionnaire subscribed to (LinkedIn) and the rest did not. Their data was analyzed statistically, and the general arithmetic mean and the hypothetical mean was extracted for them to achieve the objectives of the study and prove their hypotheses. The site positively
... Show MoreThe preparation, spectroscopic characterisation of complexes derived from the mixed ligands with CdII, ZnII and CoII metal ions with Schiff base, Dithiocarbamates (DTCs) and 8-Hydroxyquinoline are reported. The compounds that prepared have been defined via; chloride content, F.T-IR, UV-Vis 1H-NMR spectroscopy and C.H.N.S, as well as conductance and magnetic susceptibility.All data which collected from such methods specified complexes with 6 coordinates in solution and solid states. The biologicalactivity that is related to all the prepared compounds which were screened for their antimicrobial activitiesagainst (G+ and (G-)). The data that collected from biological activity indicate that complexes will have extra activity against such tested
... Show MoreIn this paper ,six new mixed metal ligand complexes are reported with Cephalexin (Ceph.H)as a primary ligand and Dimethylglyoxime (DMG) as secondary ligand with metal Chloride [MCl2 .nH2O. M=Mn(II),Co(II),Cu(II),Ni(II) and Zn(II),n=0-6] ,CrCl3.6H2O.The complexes are of (1:1:1)(Metal:Ligand: Ligand) Stoichiometry.The structures of these complexes are confirmed by using FT-IR and UV- electronic spectroscopies, magnetic moments, melting points, molar conductivity measurements and the metal % analysis revealed that the complexes analyze indicates a four coordinated as (A)=[M(HDMG) (Ceph)] .M=[Ni(II)and Zn(II).Six coordinated as (B) = K2[M(DMG)(CePh)(H2O)]. M= Mn (II),Co(II) and Cu(II) and (C)=[Cr(DMG)(Ceph)]Cl2. Interestingly, the in-vitro anti
... Show MoreIn this study azo dye was prepared by the reaction of m-phenylendidiazonium chloride with methyl salicylate, the resultant compound was used as a ligand for complex formation with Fe+2, Cu+2, Zn+2, Ni+2 and Co+2 ions. The prepared ligand was characterized by H1NMR, UV-Vis., And FTIR spectroscopy, CHN analysis, in addition the complexes were characterized by TGA, UV-Vis., FTIR and conductivity methods. The results indicate that the ligand chelated through phenoxy and carboxyl groups as a O4 quadra dentate ligand, the Co complex complet its hexagon coordination by bonding with chlorine and the complex wouid be electrolytic in opposite with rest complexes.
This work introduces the synthesis and the characterization of N-doped TiO2 and Co3O4 thin films prepared via DC reactive magnetron sputtering technique. N-doped TiO2 thin films was deposited on indium-tin oxide (ITO) conducting substrate at different nitrogen ratios, then the Co3O4 thin film was deposited onto the N-doped TiO2 layer to synthesize a double-layer TiO2-N/Co3O4 Photoelectrochromic device. Several techniques were used to characterize the produces which are x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared (FTIR) spectroscopy and UV–Vis spectroscopy. The Photoelectrochromic device was characterized by UV–Vis spectroscopy and the results show that the double-layer N-dope
... Show More