In the present research, a crane frame has been investigated by using finite element method. The damage is simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which means the indication of presence of the damage. The direct comparison gives an indication of the damage but the location of the damage, is not detected. The method based on changes in the dynamics characteristics of the beam structures are examined and evaluated for damage scenarios. The results of the analysis indicate that the residual error method performs well in detecting, locating and quantifying damage in single and multiple damage scenarios.
The smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, rec
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThe monitoring weld quality is increasingly important because great financial savings are possible because of it, and this especially happens in manufacturing where defective welds lead to losses in production and necessitate time consuming and expensive repair. This research deals with the monitoring and controllability of the fusion arc welding process using Artificial Neural Network (ANN) model. The effect of weld parameters on the weld quality was studied by implementing the experimental results obtained from welding a non-Galvanized steel plate ASTM BN 1323 of 6 mm thickness in different weld parameters (current, voltage, and travel speed) monitored by electronic systems that are followed by destructive (Tensile and Bending) and non
... Show More
Buildings such as malls, offices, airports and hospitals nowadays have become very complicated which increases the need for a solution that helps people to find their locations in these buildings. GPS or cell signals are commonly used for positioning in an outdoor environment and are not accurate in indoor environment. Smartphones are becoming a common presence in our daily life, also the existing infrastructure, the Wi-Fi access points, which is commonly available in most buildings, has motivated this work to build hybrid mechanism that combines the APs fingerprint together with smartphone barometer sensor readings, to accurately determine the user position inside building floor relative to well-known lan
... Show MoreVegetation monitoring is considered an important application in remote sensing task due to variation of vegetation types and their distribution. The vegetation concentration around the Earth is increase in 5% in 2000 according to NASA monitoring. This increase is due to the Indian vegetable programs. In this research, the vegetation monitoring in Baghdad city was done using Normalized Difference Vegetation Index (NDVI) for temporal Landsat satellite images (Landsat 5 TM& Landsat 8 OIL). These images had been used and utilize in different times during the period from 2000, 2010, 2015 & 2017. The outcomes of the study demonstrate that a change in the vegetation Cover (VC) in Baghdad city. (NDVI) generally shows a
... Show MoreA cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good ag
... Show MoreIn this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve
... Show MoreIn this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show MoreBiomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show MoreThis paper is based on the Sentinel-2 satellite data: the thermal, red, and NIR bands. The Babylon city was chosen in this study for different reasons: its location in the middle of Iraq and it represents the largest capitals of the Mesopotamia civilization in the word. The Land Surface Temperature (LST) was determined using a method that incorporates remote sensing, geographic information systems, and statistics. This process has made it possible to monitor the relationship between land usage and the land surface temperature for four seasons in the year 2021. The mapswere processed and analyzed by using ArcGIS software. Five maps of the LST were constructed. Each map represents diffe