Preferred Language
Articles
/
alkej-551
Heuristic D* Algorithm Based on Particle Swarm Optimization for Path Planning of Two-Link Robot Arm in Dynamic Environment
...Show More Authors

 Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved.  In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO) technique. Moreover, this work focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains. Since the environment type that discussed here is a known dynamic environment, the solution approach can be off-line. The main advantage of the off-line planning is that a global optimal path solution is always obtained, which is able to overcome all the difficulties caused by the dynamic behavior of the obstacles. A mixing approach of robot path planning using the heuristic method D* algorithm based on optimization technique is used. The heuristic D* method is chosen for finding the shortest path. Furthermore, to insure the path length optimality and for enhancing the final path, PSO technique has been utilized. The robot type has been used here is the two-link robot arm which represents a more difficult case than the mobile robot. Simulation results are given to show the effectiveness of the proposed method which clearly shows a completely safe and short path.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network
...Show More Authors

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Theoretical And Applied Information Technology
AN ENHANCED EVOLUTIONARY ALGORITHM WITH LOCAL HEURISTIC APPROACH FOR DETECTING COMMUNITY IN COMPLEX NETWORKS
...Show More Authors

Preview PDF
Scopus (5)
Scopus
Publication Date
Fri Dec 01 2017
Journal Name
2017 Ieee 56th Annual Conference On Decision And Control (cdc)
Hierarchical non-singular terminal sliding mode controller for a single link flexible joint robot manipulator
...Show More Authors

—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on t

... Show More
View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Thu Nov 17 2016
Journal Name
International Journal Of Computer Applications
Colour Recognizing Robot Arm Equipped with a CMOS Camera and an FPGA
...Show More Authors

In this paper a system is designed on an FPGA using a Nios II soft-core processor, to detect the colour of a specific surface and moving a robot arm accordingly. The surface being detected is bounded by a starting mark and an ending mark, to define the region of interest. The surface is also divided into sections as rows and columns and each section can have any colour. Such a system has so many uses like for example warehouses or even in stores where their storing areas can be divided to sections and each section is coloured and a robot arm collects objects from these sections according to the section’s colour also the robot arm can organize objects in sections according to the section’s colour.

View Publication
Publication Date
Thu Nov 17 2016
Journal Name
International Journal Of Computer Applications
Colour Recognizing Robot Arm Equipped with a CMOS Camera and an FPGA
...Show More Authors

In this paper a system is designed on an FPGA using a Nios II soft-core processor, to detect the colour of a specific surface and moving a robot arm accordingly. The surface being detected is bounded by a starting mark and an ending mark, to define the region of interest. The surface is also divided into sections as rows and columns and each section can have any colour. Such a system has so many uses like for example warehouses or even in stores where their storing areas can be divided to sections and each section is coloured and a robot arm collects objects from these sections according to the section’s colour also the robot arm can organize objects in sections according to the section’s colour.

Crossref (1)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Applied Soft Computing
A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks
...Show More Authors

View Publication
Scopus (12)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Dec 05 2019
Journal Name
Advances In Intelligent Systems And Computing
An Enhanced Evolutionary Algorithm for Detecting Complexes in Protein Interaction Networks with Heuristic Biological Operator
...Show More Authors

View Publication
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
On-Line Navigational Problem of a Mobile Robot Using Genetic Algorithm
...Show More Authors

Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On-Line Navigational Problem of a Mobile Robot Using Genetic Algorithm
...Show More Authors

  Manufacturing systems of the future foresee the use of intelligent vehicles, optimizing and navigating. The navigational problem is an important and challenging problem in the field of robotics. The robots often find themselves in a situation where they must find a trajectory to another position in their environment, subject to constraints posed by obstacles and the capabilities of the robot itself. On-line navigation is a set of algorithms that plans and executes a trajectory at the same time.         The system adopted in this research searches for a robot collision-free trajectory in a dynamic environment in which obstacles can move while the robot was moving toward the target. So, the ro

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF