This paper describes a microcontroller-based function generator system. By the function generator sine wave, square wave, quasi-square wave, saw-tooth and triangular waveforms are generated over a wide frequency range according to user requirements. By utilizing processing capabilities of the microcontroller the hardware is minimized exceedingly. The output waveform shapes are digitally-controlled to achieve the required wave shape. The single chip microcomputer of waveform generation equipment offers the possibility of improvements in manufacture reliability, maintenance and servicing and increased control flexibility. The system is built and tested. The results of test were satisfactory and appreciated by test engineers at different centers of ministry of communications.
Baghdad city has been faced numerous issues related to freshwater environment deteriorations due to many reasons, mainly was the discharge of wastewater without adequate treatment. Al- Rustamiya Wastewater Treatment Plant (WWTP) have been constructed among many plants in Baghdad city to reduce the amount of wastewater discharged into natural environment and its subsequent adverse effects. This study was conducted to evaluate the performance of the plant which consist of a conventional activated sludge (CAS) and sequencing batch reactors (SBR) systems as secondary treatment units and its ability to meet Iraqi specifications. A reliability level determination and analysis also were conducted to find the plant's stability and its capabi
... Show MoreA new, Simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sulfanilamide (SNA) drug in pure and in synthetic sample. This method based on the reaction of sulfanilamide (SNA) with 1,2-napthoquinone-4-sulphonic acid (NQS) to form N-alkylamono naphthoquinone by replacement of the sulphonate group of the naphthoquinone sulphonic acid by an amino group. The colored chromogen shows absorption maximum at 455 nm. The optimum conditions of condensation reaction forms were investigated by: (1) univariable method, by optimizing the effect of experimental variables; (different bases, reagent concentration, borax concentration and reaction time), (2) central composite design (CCD) including
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreSome degree of noise is always present in any electronic device that
transmits or receives a signal . For televisions, this signal i has been to s the
broadcast data transmitted over cable-or received at the antenna; for digital
cameras, the signal is the light which hits the camera sensor. At any case, noise
is unavoidable. In this paper, an electronic noise has been generate on
TV-satellite images by using variable resistors connected to the transmitting cable
. The contrast of edges has been determined. This method has been applied by
capturing images from TV-satellite images (Al-arabiya channel) channel with
different resistors. The results show that when increasing resistance always
produced higher noise f
Recently, many materials have shown that they can be used as alternatives to chemicals materials in order to be used to improve the properties of drilling fluids. Some of these materials are banana peels and corn cobs which both are considered environmentally- friendly materials. The results of the X-ray diffraction examination have proved that the main components of these materials are cellulose and hemicellulose, which contribute greatly to the increasing of the effectiveness of these two materials. Due to their distinct composition, these two materials have improved the rheological properties (plastic viscosity and yield point) and reduced the filtration of the drilling fluids to a large extent. The addition rates used for each o
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
By definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturb
... Show MoreLED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more e
... Show MoreComputer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show More