This project introduces a prospective material for photonic laser applications. The material is olive oil which is classified as organic compound, having a good nonlinear optical properties candidate to be used in photonic applications. A high purity sample of olive oil has been used. The theoretical calculation to generate third harmonic wave using olive oil has been determine using MATLAB program. THG (λ=355nm) intensity has been determined at two cases of sample thicknesses 1mm and 10mm. The minimum threshold incident intensity to obtain THG intensity are equal Iω=7530 mW/cm2 at L=1mm and Iω= 6220 mW/cm2 at L=10mm. The possibility of generation of third harmonic in olive oil inside the cuvette has been experimented using different powers (90-120) mW of CW Nd:YAG laser. The signal of third harmonic generation has been detected using UV-340 Light Meter.
S a mples of compact magnesia and alumina were evaporated
using CO2-laser .The
Processed powders were characterized by electron microscopy
and both scanning and transmission electron microscope. The results
indicated that the particle size for both powders have reduced largely
to 0.003 nm and 0.07 nm for MgO and Al2O3, with increasing in
shape sphericity.
The Indian costus plasma properties are investigated including electron temperature (Te), "electron density (ne)", "plasma frequency (fp)", " Debye sphere length", and amount of Debye(Nd), using the spectrum of optical emission technique. There are several energies used, with ranging from 300 to 600 mJ. The Boltzmann Plot is used to calculate the temperature; where as Stark's Line Broadening is used to calculate the electron density. The Indian costus was spectroscopically examined in the air with the laser at 10 cm away from the target and the optical fiber at 0.5 cm away. The results were obtained for an electron temperature range of (1.8-2.2) electron volts (ev) and a wavelength range of (300-600) nm. The XRF analysis reveals th
... Show MoreThe growing demand for optical fibers is due to their superior the ability to transmit information with high efficiency and minimal loss across extensive distances. In this study, four optical fibers with core radii ranging from (2.05-5.05) μm, and with a numerical aperture of 0.1624 were analyzed. The modal properties of these fibers were calculated at a wavelength of 1030 nm using the RP Fiber Calculator software (free version 2025). Furthermore, the impact of increasing the core radius on these properties was examined. The results showed that multimode fibers are formed when the core radius is much larger than the wavelength used. In contrast, single-mode fiber is obtained when th
The electro-optic coefficient r63 and r41 are determined in congruent KDP crystals, using an experimental method based upon the direct measurement of material. Sénarmont system for electro-optic coefficient measurement and characterization of crystals was modified. This modification allowed us to obtain on the frequency dispersion dependence of the electro-optic coefficients within a frequency range up to 20 MHz and on a new version of modulation depth method. To the best of our knowledge, by using this system, the electro-optic coefficients r63 and r41 in different configurations (transverse and longitudinal) have been measured for the first time within a frequency range up to 20 MHz. The measurements have been investigated as a functi
... Show MoreOptical fiber technology is without a doubt one of the most significant phases of the communications revolution and is crucial to our daily lives. Using the free version (2022) of RP Fiber Calculator, the modal properties for optical fibers with core radii (1.5−7.5) μm, core index (1.44−1.48) and cladding index (1.43−1.47) have been determined at a wavelength of 1000 nm. When the fiber core’s radius is larger than its operating wavelength, multimode fibers can be created. The result is a single-mode fiber in all other cases. All of the calculated properties, it has been shown, increase with increasing core radius. The modes’ intensity profiles were displayed.
Abstract: Polarization beam splitter (PBS) integrated waveguides are the key components in the receiver of quantum key distribution (QKD) systems. Their function is to analyze the polarization of polarized light and separate the transverse-electric (TE) and transverse-magnetic (TM) polarizations into different waveguides. In this paper, a performance study of polarization beam splitters based on horizontal slot waveguide has been investigated for a wavelength of . PBS based on horizontal slot waveguide structure shows a polarization extinction ratio for quasi-TE and quasi-TM modes larger than with insertion loss below and a bandwidth of . Also, the fabrication tolerance of the structure is analyzed.<
... Show MoreToday, the architecture field is witnessing a noticeable evolution regarding the used tools that the designer should invest in a peculiar way that is made available in architecture through the concept of synergy generally and algorithmic synergy specifically. The synergy is meant to study and analyze the cooperative behavior of complex systems and self-organizing systems that leads to different outputs referred to by the synergy as the (whole), which is bigger than the sum of parts and in architecture, it's translated as the architectural form. This point resulted in a need of a specific study regarding the concept of synergy that focuses on the cooperative, synergistic relations within the trilogy of (form, structure, and material) and
... Show MoreDue to the popularity of radar, receivers often “hear” a great number of other transmitters in
addition to their own return merely in noise. The dealing with the problem of identifying and/or
separating a sum of tens of such pulse trains from a number of different sources are often received on
the one communication channel. It is then of interest to identify which pulses are from which source,
based on the assumption that the different sources have different characteristics. This search deals with a
graphical user interface (GUI) to generate the radar pulse in order to use the required radar signal in any
specified location.
Municipal solid waste generation in Babylon Governorate is often affected by changes in lifestyles, population growth, social and cultural habits and improved economic conditions. This effect will make it difficult to plan and draw up future plans for solid waste management.In this study, municipal solid waste was divided into residential and commercial solid wastes. Residential solid wastes were represented by household wastes, while commercial solid wastes included commercial, institutional and municipal services wastes.For residential solid wastes, the relational stratified random sampling was implemented, that is the total population should be divided into clusters (socio-income level), a random sample was taken in e
... Show MoreMany image processing and machine learning applications require sufficient image feature selection and representation. This can be achieved by imitating human ability to process visual information. One such ability is that human eyes are much more sensitive to changes in the intensity (luminance) than the color information. In this paper, we present how to exploit luminance information, organized in a pyramid structure, to transfer properties between two images. Two applications are presented to demonstrate the results of using luminance channel in the similarity metric of two images. These are image generation; where a target image is to be generated from a source one, and image colorization; where color information is to be browsed from o
... Show More