Preferred Language
Articles
/
alkej-475
Heat Transfer of Single and Binary Systems in Pool Boiling
...Show More Authors

The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.

The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltmeter and ammeter readings. A water cooled coil condenses the vapor produced by the heat input and the liquid formed returns to the cylinder for re-evaporation.

The boiling results show that the nucleate pool boiling heat transfer coefficients of binary mixtures were always lower than the pure components nucleate pool boiling heat transfer coefficients. This confirmed that the mass transfer resistance to the movement of the more volatile component was responsible for decrease in heat transfer and that the maximum deterioration that was observed at a point was the absolute concentration differences between vapor and liquid phases at their maximum. All the data points were tested with the most widely known correlations namely those of Calus-Leonidopoulos, Fujita and Thome. It was found that Thome's correlation is the more representative form, for it gave the least mean and standard deviations.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 30 2013
Journal Name
Australian Journal Of Basic And Applied Sciences
CFD Simulation of Heat Transfer Augmentation in Constant Heat-Fluxed Tube fitted with Baffled Twisted Tape Inserts
...Show More Authors

Publication Date
Sat Mar 04 2023
Journal Name
Baghdad Science Journal
Approximate Solution of Sub diffusion Bio heat Transfer Equation
...Show More Authors

In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Effect of Solid Particle Properties on Heat Transfer and Pressure Drop in Packed Duct
...Show More Authors

This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.

... Show More
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Evaluation of Convective Heat Transfer and Natural Circulation in an Evacuated Tube Solar Collector
...Show More Authors

The evacuated tube solar collector ETC is studied intensively and extensively by experimental and
theoretical works, in order to investigate its performance and enhancement of heat transfer, for Baghdad climate
from April 2011 till the end of March 2012. Experimental work is carried out on a well instrumented collector
consists of 16 evacuated tubes of aspect ratio 38.6 and thermally insulated tank of volume 112L. The relation
between convective heat transfer and natural circulation inside the tube is estimated, collector efficiency, effect of
tube tilt angles, incidence angle modifier, The solar heating system is investigated under different loads pattern (i.e
closed and open flow) to evaluate the heat loss coefficient

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
MIXED CONVECTIVE AND RADIATIVE HEAT TRANSFER IN A HORIZONTAL CONCENTRIC AND ECCENTRIC CYLINDRICAL ANNULI
...Show More Authors

A numerical investigation has been performed to study the effect of eccentricity on unsteady state, laminar aiding mixed convection in a horizontal concentric and eccentric cylindrical annulus. The outer cylinder was kept at a constant temperature
while the inner cylinder was heated with constant heat flux. The study involved numerical solution of transient momentum (Navier-Stokes) and energy equation using finite difference method (FDM), where the body fitted coordinate system (BFC) was
used to generate the grid mesh for computational plane. The governing equations were transformed to the vorticity-stream function formula as for momentum equations and to the temperature and stream function for energy equation.
A computer progra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
The Influence of the Preparation and Stability of Nanofluids for Heat Transfer
...Show More Authors

Recently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
Numerical Investigation of Heat Transfer Enhancement of Double Pipe Heat Exchanger Using Metal Foam Fins
...Show More Authors

The influence of adding metal foam fins on the heat transfer characteristics of an air to water double pipe heat exchanger is numerically investigated. The hot fluid is water which flows in the inner cylinder whereas the cold fluid is air which circulates in the annular gap in parallel flow with water. Ten fins of metal foam (Porosity = 0.93), are added in the gap between the two cylinder, and distributed periodically with the axial distance. Finite volume method is used to solve the governing equations in porous and non-porous regions. The numerical investigations cover three values for Reynolds number (1000 ,1500, 2000), and Darcy number (1 x10-1, 1 x10-2, 1x10-3). The comparison betwee

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Experimental Investigation of Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Compound Technique of Transverse Vibration and Inclination Angle
...Show More Authors

Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Review on Heat Transfer Process Inside Open and Closed Porous Cavity
...Show More Authors

Many researchers used different methods in their investigations to enhance the heat transfer coefficient, one of these methods is using porous medium. Heat transfer process inside closed and open cavities filled with a fluid-saturated porous media has a considerable importance in different engineering applications, such as compact heat exchangers, nuclear reactors and solar collectors. So, the present paper comprises a review on natural, forced, and combined convection heat transfer inside a porous cavity with and without driven lid. Most of the researchers on this specific subject studied the effect of many parameters on the heat transfer and fluid field inside a porous cavity, like the angle of inclination, the presenc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Advances In Mechanical Engineering
Experimental and Numerical Investigations of Heat Transfer Characteristics for Impinging Swirl Flow
...Show More Authors

This paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which correspo

... Show More
View Publication
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref