Preferred Language
Articles
/
alkej-459
Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PIaDb Controller
...Show More Authors

Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order  PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to  torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of mobile robot was driven for the case where the centroid  of mobile robot platform is not coincide with reference frame of mobile robot (i.e. reference frame is located at midpoint of driven wheels axis), while the inertia is counted for. The Evolutionary Algorithm has been used to modified the parameters (Kp, Kd, Ki,a, and b) of the FOPID controller for wheeled mobile robot. Simulation results show the effectiveness of the proposed control algorithm: that is demonstrated by applied this controller at four case studies (Circular trajectory, S-shape trajectory, Infinity trajectory, and Line trajectory at two cases, with presences of disturbance and without), these results shows good matching between desired trajectory and simulation one while error in posture goes to zero rapidly.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Constructing RKM-Method for Solving Fractional Ordinary Differential Equations of Fifth-Order with Applications
...Show More Authors

This paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs  in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Mobile-based Telemedicine Application using SVD and F-XoR Watermarking for Medical Images
...Show More Authors

A medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Ieee Transactions On Systems, Man, And Cybernetics: Systems
Design of Robust Terminal Sliding Mode Control for Underactuated Flexible Joint Robot
...Show More Authors

Flexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct

... Show More
View Publication
Scopus (93)
Crossref (81)
Scopus Clarivate Crossref
Publication Date
Fri Mar 10 2023
Journal Name
Mathematics
Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System
...Show More Authors

A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon May 04 2009
Journal Name
Journal Of Al-nahrain University
Solution of two-dimensional fractional order volterra integro-differential equations
...Show More Authors

In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.

View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
...Show More Authors

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2016
Journal Name
2016 International Conference On Advanced Mechatronic Systems (icamechs)
Hierarchical sliding mode control applied to a single-link flexible joint robot manipulator
...Show More Authors

Trajectory tracking and vibration suppression are essential objectives in a flexible joint manipulator control. The flexible joint manipulator is an under-actuated system, in which the number of control actions is less than the degree of freedom to be controlled. It is very challenging to control the underactuated nonlinear system with two degree of freedom. This paper presents a hierarchical sliding mode control (HSMC) for a rotary flexible joint manipulator (RFJM). Firstly, the rotary flexible joint manipulator is modeled by two subsystems. Secondly, the sliding surfaces for both subsystems are constructed. Finally, the control action is designed based on the Lyapunov function. Computer simulation results demonstrate the effectiveness of

... Show More
View Publication
Scopus (25)
Crossref (12)
Scopus Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Journal Of Robotics
Real-Time SLAM Mobile Robot and Navigation Based on Cloud-Based Implementation
...Show More Authors

This study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of different sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service. Then, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. This provides a database

... Show More
View Publication
Scopus (12)
Crossref (8)
Scopus Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Ant Colony Optimization Based Force-Position Control for Human Lower Limb Rehabilitation Robot
...Show More Authors

The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Ieee Transactions On Industrial Electronics
Cascaded-Extended-State-Observer-Based Sliding-Mode Control for Underactuated Flexible Joint Robot
...Show More Authors

This article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th

... Show More
View Publication
Scopus (122)
Crossref (116)
Scopus Clarivate Crossref