Preferred Language
Articles
/
alkej-459
Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PIaDb Controller

Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order  PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to  torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of mobile robot was driven for the case where the centroid  of mobile robot platform is not coincide with reference frame of mobile robot (i.e. reference frame is located at midpoint of driven wheels axis), while the inertia is counted for. The Evolutionary Algorithm has been used to modified the parameters (Kp, Kd, Ki,a, and b) of the FOPID controller for wheeled mobile robot. Simulation results show the effectiveness of the proposed control algorithm: that is demonstrated by applied this controller at four case studies (Circular trajectory, S-shape trajectory, Infinity trajectory, and Line trajectory at two cases, with presences of disturbance and without), these results shows good matching between desired trajectory and simulation one while error in posture goes to zero rapidly.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Partial Sums of Some Fractional Operators of Bounded Turning: Partial Sums of Some Fractional Operators

            In this paper, several conditions are put in order to compose the sequence of partial sums ,  and  of the fractional operators of analytic univalent functions ,  and   of bounded turning which are bounded turning too.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (35)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Chaos, Solitons & Fractals
Dynamic analysis of a harvested fractional-order biological system with its discretization

View Publication
Scopus (24)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Tue Jun 25 2024
Journal Name
Journal Européen Des Systèmes Automatisés
Whole-Body Anti-Input Saturation Control of a Bipedal Robot

View Publication
Scopus Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Hexapod Robot Static Stability Enhancement using Genetic Algorithm

Abstract

Hexapod robot is a flexible mechanical robot with six legs. It has the ability to walk over terrain. The hexapod robot look likes the insect so it has the same gaits. These gaits are tripod, wave and ripple gaits. Hexapod robot needs to stay statically stable at all the times during each gait in order not to fall with three or more legs continuously contacts with the ground. The safety static stability walking is called (the stability margin). In this paper, the forward and inverse kinematics are derived for each hexapod’s leg in order to simulate the hexapod robot model walking using MATLAB R2010a for all gaits and the geometry in order to derive the equations of the sub-constraint workspaces for each

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Geolocation Android Mobile Phones Using GSM/UMTS

The proliferation of cellular network enabled users through various positioning tools to track locations, location information is being continuously captured from mobile phones, created a prototype that enables detected location based on using the two invariant models for Global Systems for Mobile (GSM) and Universal Mobile Telecommunications System (UMTS). The smartphone application on an Android platform applies the location sensing run as a background process and the localization method is based on cell phones. The proposed application is associated with remote server and used to track a smartphone without permissions and internet. Mobile stored data location information in the database (SQLite), then transfer it into location AP

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Active Vibration Control of Cantilever Beam by Using Optimal LQR Controller

Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.  

In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effec

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
A Fuzzy Logic Controller Based Vector Control of IPMSM Drives

This paper explores a fuzzy-logic based speed controller of an interior permanent magnet synchronous motor (IPMSM) drive based on vector control. PI controllers were mostly used in a speed control loop based field oriented control of an IPMSM. The fundamentals of fuzzy logic algorithms as related to drive control applications are illustrated. A complete comparison between two tuning algorithms of the classical PI controller and the fuzzy PI controller is explained. A simplified fuzzy logic controller (FLC) for the IPMSM drive has been found to maintain high performance standards with a much simpler and less computation implementation. The Matlab simulink results have been given for different mechanical operating conditions. The simulated

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Inverse Kinematics Solution for Redundant Robot Manipulator using Combination of GA and NN

A demonstration of the inverse kinematics is a very complex problem for redundant robot manipulator. This paper presents the solution of inverse kinematics for one of redundant robots manipulator (three link robot) by combing of two intelligent algorithms GA (Genetic Algorithm) and NN (Neural Network). The inputs are position and orientation of three link robot. These inputs are entering to Back Propagation Neural Network (BPNN). The weights of BPNN are optimized using continuous GA. The (Mean Square Error) MSE is also computed between the estimated and desired outputs of joint angles. In this paper, the fitness function in GA is proposed. The sinwave and circular for three link robot end effecter and desired trajectories are simulated b

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat May 28 2022
Journal Name
Abstract And Applied Analysis
Discretization Fractional-Order Biological Model with Optimal Harvesting

In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.

View Publication
Scopus (2)
Scopus Crossref