A dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally the discrepancy of the results was 17.4906% when the severe nonlinearity is considered.
Triticale is being evaluated as a substitute for corn in animal feed and as a forage crop for Florida. Storage of triticale seed is difficult in Florida's hot and humid climate, and more information about the relationships between equilibrium moisture content (EMC) and equilibrium relative humidity (ERH) at constant temperature (sorption isotherms) of triticale is needed to develop improved storage methods. Therefore, the primary research objective was to measure the EMC for triticale seed at different ERH values at three different constant temperatures (5°C, 23°C, and 35°C) using six desiccation jars containing different saturated salt concentrations. The secondary objective was to determine the best fit equation describing these relati
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
Optimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some stan
... Show MoreBuilding Information Modeling (BIM) and Lean Construction (LC) are two quickly growing applied research areas in construction management. This study focuses on identifying the most essential benefits and analyzing the most affecting constraints on the construction sector that construction players face as they attempt to combine BIM-LC in Iraqi construction. Experts assessed 30 benefits and 28 constraints from examining the previous literature, and a two-round Delphi survey formed the responses. Expert consensus analysis was utilized to elaborate and validate responses after descriptive statistical checks had been used for data processing.
According to the study's findings, the benefits include ensuring the most ef
... Show MoreMultipole mixing ratios for gamma transition populated in from reaction have been studied by least square fitting method also transition strength ] for pure gamma transitions have been calculated taking into account the mean life time for these levels .
Cox regression model have been used to estimate proportion hazard model for patients with hepatitis disease recorded in Gastrointestinal and Hepatic diseases Hospital in Iraq for (2002 -2005). Data consists of (age, gender, survival time terminal stat). A Kaplan-Meier method has been applied to estimate survival function and hazerd function.
The goal of this research is to solve several one-dimensional partial differential equations in linear and nonlinear forms using a powerful approximate analytical approach. Many of these equations are difficult to find the exact solutions due to their governing equations. Therefore, examining and analyzing efficient approximate analytical approaches to treat these problems are required. In this work, the homotopy analysis method (HAM) is proposed. We use convergence control parameters to optimize the approximate solution. This method relay on choosing with complete freedom an auxiliary function linear operator and initial guess to generate the series solution. Moreover, the method gives a convenient way to guarantee the converge
... Show MoreMany fuzzy clustering are based on within-cluster scatter with a compactness measure , but in this paper explaining new fuzzy clustering method which depend on within-cluster scatter with a compactness measure and between-cluster scatter with a separation measure called the fuzzy compactness and separation (FCS). The fuzzy linear discriminant analysis (FLDA) based on within-cluster scatter matrix and between-cluster scatter matrix . Then two fuzzy scattering matrices in the objective function assure the compactness between data elements and cluster centers .To test the optimal number of clusters using validation clustering method is discuss .After that an illustrate example are applied.
In this article, the inverse source problem is determined by the partition hyperbolic equation under the left end flux tension of the string, where the extra measurement is considered. The approximate solution is obtained in the form of splitting and applying the finite difference method (FDM). Moreover, this problem is ill-posed, dealing with instability of force after adding noise to the additional condition. To stabilize the solution, the regularization matrix is considered. Consequently, it is proved by error estimates between the regularized solution and the exact solution. The numerical results show that the method is efficient and stable.
The growth curves of the children are the most commonly used tools to assess the general welfare of society. Particularity child being one of the pillars to develop society; through these tools, we can path a child's growth physiology. The Centile line is of the important tools to build these curves, which give an accurate interpretation of the information society, also respond with illustration variable age. To build standard growth curves for BMI, we use BMI as an index. LMSP method used for finding the Centile line which depends on four curves represents Median, Coefficient of Variation, Skews, and Kurtosis. These can be obtained by modeling four parameters as nonparametric Smoothing functions for the illustration variable. Ma
... Show More