The distribution of chilled water flow rate in terminal unit is a major factor used to evaluate the performance of central air conditioning unit. In this work, a theoretical chilled water distribution in the terminal units has been studied to predict the optimum heat performance of terminal unit. The central Air-conditioning unit model consists of cooling/ heating coil (three units), chilled water source (chiller), three-way and two-way valve with bypass, piping network, and pump. The term of optimization in terminal unit ingredient has two categories, the first is the uniform of the water flow rate representing in statically permanents standard deviation (minimum value) and the second category is the maximum heat transfer rate from all terminal units. The hydraulic and energy equations governing the performance of unit solved with the aid of FORTRAN code with considering the following parameters: total water flow rate, chilled water supply temperature, and variable valve opening. It was found that the optimum solution of three-way valve case at 8°C water supply temperature, 0.12 kg/s total water flow rate and valve opening order (valve 1: 100%, valve 2: 100% and valve 3: 75%) with total heat rate (987.92 Watt) and standard deviation (1.181E-3). Also, for the two-way valve case the results showed that the optimum condition at 8°C water supply temperature, 0.12 kg/s total water flow rate and valve opening order (valve 1: 75%, valve 2: 75% and valve 3: 50%) with total heat rate and standard deviation (717Watt) and (5.69E-4) respectively.
The current study was conducted to find out the effect of the sediment source (sedimentary of Iraqi-Iranian borderline and Tigris River) on the content and distribution of feldspar minerals and their effect on the optical properties of these minerals in some soils of Wasit and Maysan province. Eight pedons were chosen to represent the study area, five of them represented sediments coming from the borderline, which included pedons of (Badra, Taj Al-Din, Al-Shihabi, Jassan, and Galat), while two of them represent the sediments of the Tigris River (Essaouira, Al-Dabouni). Finally, the pedon of Ali Al-Gharbi represented the mixing area of sediments of all the torrents coming from borderline and the sediments of the Tigris River. The diagnostic
... Show MoreBackground: To investigate the effect of different types of storage media on enamel surface microstructure of avulsed teeth by using atomic force microscope.Materials and methods : Twelve teeth blocks from freshly extracted premolars for orthodontic treatment were selected . The study samples were divided into three groups according to type of storage media :A-egg white , B- probiotic yogurt , and C-bovine milk . All the samples were examined for changes in surface roughness and surface granularity distribution using atomic force microscope, at two periods: baseline, and after 8 hours of immersing in the three types of storage media. Results: Milk group had showed a significant increase in the mean of the roughness values at
... Show MoreThe depth of causative source of gravity is one of the most important parameter
of gravity investigation. Present study introduces the theoretical solve of the
intersection point of the horizontal and vertical gradients of gravity anomaly. Two
constants are obtained to estimate the depth of causative source of gravity anomaly,
first one is 1.7807 for spherical body and the second is 2.4142 for the horizontal
cylinder body. These constants are tested for estimating the depth of three actual
cases and good results are obtained. It is believed that the constants derived on
theoretical bases are better than those obtained by empirical experimental studies.
Ti6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were
... Show MoreA new novel series of metalcomplexes are prepared from reactions between 2-benzoylthio- benzimidazole (L) with metal salts of Co (II) , Fe(III) and Rh (III) , while Pd(II) complex was obtained by mixing ligandsof 2-benzoylthiobenzimidazole (L) as primary ligand and bipyridine (L/)as secondary ligand as well as palladium chloride as metal salt in an ethanoic medium. The geometry of these compounds were identified using C.H.N.microanalysis, Ultraviolet–visible, Fourier transforms infrared, magnetic susceptibility, molar conductivity and flame atomic absorption (A.A). From the dataobtained by these spectral analyses, the molecular structures for Rh and Fe complexes were proposed to be octahedral geometry. A square planar const
... Show MoreDFT (3-21G, 6-31G and 6-311G/ B3LYP) and Semi-empirical PM3 methods were applied for calculating the vibration frequencies and absorption intensities for normal coordinates (3N-6) of the Tri-rings layer (6,0) Zigzag single wall carbon nanotube (SWCNT) at their equilibrium geometries which was found to have D6h symmetry point group with C-C bond alternation in all tube rings.as well as mono ring layer. Assignments of the modes of vibration were done depending on the pictures of their modes applying by Gaussian 03 program. The whole relations for the vibration modes were also done including (CH stretching, CC stretching, deformation in plane of the molecule (δCH, δring and δCCC), deformation out of plane of the molecule (CH and
... Show MoreIn this research, the dynamics process of charge transfer from the sensitized D35CPDT dye to tin(iv) oxide( ) or titanium dioxide ( ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of or semiconductors vary from a to for system and from a to for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT / the system is
... Show MoreRecently, the Internet of Things has emerged as an encouraging technology that is scaling up new heights towards the modernization of real word physical objects into smarter devices in several domains. Internet of Things (IoT) based solutions in agriculture drives farming into a smart way through the proliferation of smart devices to enhanced production with minimal human involvement. This paper presents a comprehensive study of the role of IoT in prominent applications of farming, wireless communication protocols, and the role of sensors in precision farming. In this research article, the existing frameworks in IoT-based agriculture systems with relevant technologies are presented. Furthermore, the comparative analysis of the a
... Show MoreIn this research, the dynamics process of charge transfer from the sensitized D35CPDT dye to tin(iv) oxide( ) or titanium dioxide ( ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of or semiconductors vary from a to for system and from a to for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT / the syst
... Show MoreBearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us
... Show More