This research deals with the effects of welding variables using MIG/MAG spot by using Argon (Ar) gas and CO2 to show their effect on the mechanical characteristics and microstructure of low alloy steel type DIN15Mo3 and determine the optimum condition for the process of welding ; current & time. The results show the possibility of using CO2 and also Ar in low alloy steel welding with a little decrease in the shear force of not more than 13% for 4mm thickness and time 2sec. The shear force increased when using Ar instead of CO2 to be , The shear force reach 36KN when using Ar at 2mm thickness time of 8 sec and current of 220 Amp. , when used CO2 instead of Ar decreased shear force to 31KN reach decrease rate 13% while for a thikness of 4mm , time 8sec and acurrent of 290Amp. it was 37.9kN , when used CO2 became 30.9KN decrease rate 18.5% and for a thikness of 6mm , time 8 sec and 450Amp. current it was 39 KN when used CO2 it become 37KN redusing rate 5.20% .The diameter and penetration of welding have straight relation with the increase of current and time.
The biochar prepared from sawdust raw material was applied in this study for the treatment of wastewater polluted with methyl orange dye. The effect of pH (2-11), initial concertation (50-250 mg/L) and time were studied. The isotherm of Langmuir, Frendluch and temkin models studied. The Langmuir model was the best to explain the adsorption process, maximum uptake was 136.67 mg/g at 25Co of methyl orange dye. Equilibrium reached after four hours of contact for most adsorbents.The values of thermodynamic parameters ∆G were negative at various temperatures, so the process spontaneous, while ∆H values were 16683 j/mol and ∆S values was 60.82 j/mol.k.
This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance,
... Show MoreThis study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar
... Show MoreChanging oil-wet surfaces toward higher water wettability is of key importance in subsurface engineering applications. This includes petroleum recovery from fractured limestone reservoirs, which are typically mixed or oil-wet, resulting in poor productivity as conventional waterflooding techniques are inefficient. A wettability change toward more water-wet would significantly improve oil displacement efficiency, and thus productivity. Another area where such a wettability shift would be highly beneficial is carbon geo-sequestration, where compressed CO2 is pumped underground for storage. It has recently been identified that more water-wet formations can store more CO2. We thus examined how silica based nanofluids can induce such a wettabil
... Show MoreIn this study three reactive dyes (blue B, red R and yellow Y) in single , binary and ternary solution were adsorbed by activated carbon AC in equilibrium and kinetic experiments. Surface area, Bulk and real density, and porosity were carried out for the activated carbon.
Batch Experiments of pH (2.5-8.5) and initial concentration (5-100) mg/l were carried out for single solution for each dye. Experiments of adsorbent dosage effect (0.1-1)g per 100 ml were studied as a variable to evaluate uptake% and adsorption capacity for single dyes(5, 10) ppm, binary and ternary (10) ppm of mixture solutions solution of dyes. Langmuir, and Freundlich, models were used as Equilibrium isotherm models for single solution. Extended Langmuir and Freun
Activated carbon prepared from date stones by chemical activation with ferric chloride (FAC) was used an adsorbent to remove phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) from aqueous solutions. The influence of process variables represented by solution pH value (2-12), adsorbent to adsorbate weight ratio (0.2-1.8), and contact time (30-150 min) on removal percentage and adsorbed amount of Ph and PNPh onto FAC was studied. For PNPh adsorption,( 97.43 %) maximum removal percentage and (48.71 mg/g) adsorbed amount was achieved at (5) solution pH,( 1) adsorbent to adsorbate weight ratio, and (90 min) contact time. While for Ph adsorption, at (4) solution pH, (1.4) absorbent to adsorbate weight ratio, and (120 min) contact
... Show MoreSteganography is the art of secret communication. Its purpose is to hide the presence of information, using, for example, images as covers. The frequency domain is well suited for embedding in image, since hiding in this frequency domain coefficients is robust to many attacks. This paper proposed hiding a secret image of size equal to quarter of the cover one. Set Partitioning in Hierarchal Trees (SPIHT) codec is used to code the secret image to achieve security. The proposed method applies Discrete Multiwavelet Transform (DMWT) for cover image. The coded bit stream of the secret image is embedded in the high frequency subbands of the transformed cover one. A scaling factors ? and ? in frequency domain control the quality of the stego
... Show MoreThe aim was to design a MATLAB program to calculate the phreatic surface of the multi-well system and present the graphical shape of the water table drawdown induced by water extraction. Dupuit’s assumption is the base for representing the dewatering curve. The program will offer the volume of water to be extracted, the total number of wells, and the spacing between them as well as the expected settlement of soil surrounding the dewatering foundation pit. The dewatering well arrangement is required in execution works, and it needs more attention due to the settlement produced from increasing effective stress.