This research deals with the effects of welding variables using MIG/MAG spot by using Argon (Ar) gas and CO2 to show their effect on the mechanical characteristics and microstructure of low alloy steel type DIN15Mo3 and determine the optimum condition for the process of welding ; current & time. The results show the possibility of using CO2 and also Ar in low alloy steel welding with a little decrease in the shear force of not more than 13% for 4mm thickness and time 2sec. The shear force increased when using Ar instead of CO2 to be , The shear force reach 36KN when using Ar at 2mm thickness time of 8 sec and current of 220 Amp. , when used CO2 instead of Ar decreased shear force to 31KN reach decrease rate 13% while for a thikness of 4mm , time 8sec and acurrent of 290Amp. it was 37.9kN , when used CO2 became 30.9KN decrease rate 18.5% and for a thikness of 6mm , time 8 sec and 450Amp. current it was 39 KN when used CO2 it become 37KN redusing rate 5.20% .The diameter and penetration of welding have straight relation with the increase of current and time.
A novel demountable shear connector is proposed to link a concrete slab to steel sections in a way that resulting steel-concrete composite floor is demountable, i.e. it can be easily dismantled at the end of its service life. The proposed connectors consist of two parts: the first part is a hollow steel tube with internal threads at its lower end. The second part is a compatible partially threaded bolted stud. After linking the stud to the steel section, the hollow steel tube can be fastened over the threaded stud, which create a complete demountable shear connector. The connector is suitable for use in both composite bridges and buildings, and using cast in-situ slabs, precast solid slabs, or hollow-core precast slabs. A series of push-off
... Show MoreThe traction property is one of the important mechanical properties, especially the rotary parts which are subjected to constant and variable loads There are many methods used to improve this property, and the shoot peening by metal balls is considered the most critical one. the study focuses on this characteristic of steel CK35 used in many engineering applications as the rotating shafts and railway This study shows that the fatigue strength is improved by14% after shoot peening with metal balls. The study includs the rehabilitation of damaged samples as a result of fatigue corrosion. The standard solution adopted was 36% MgCl2 with a 30 days immersion period. These samples has been improved by 6% after it decreased by18% d
... Show MoreSynthesis three organic inhibitors for carbon steel corrosion: 2-(propylthio)-1H-benzo[d]imidazole (PTBI), 2-(allylthio)- 1H-benzo[d]imidazole (ATBI) and 2-(prop-2-ynylthio)-1H-benzo[d]imidazole (YTBI) were prepared from reaction of 2-mercapto benzimidazole with different alkyl halide. The melting point and TLC were used to confirm the purity of the inhibitors as well as using the [FTIR, 1H-NMR and 13C-NMR] for the identify structures. The synthesized inhibitors were examined by potentiostatic polarization measurement as corrosion inhibitors of carbon steel in acidic media [1M H2SO4 ].The polarization measurement results showed that the mixed type inhibitors. In addition, the efficiency of inhibitors (YTBI) were studied at different con
... Show MoreIn this work, synthesized N4,N4`-bis(2, 3, 4 nitro benzylidene) biphenyi-4-4`-diamine(B1-B3) , was tested as an inhibitors in controlling the corrosion of carbon steel in NaCl 3.5% solution by using open circuit potential (OCP),at four different temperatures (293, 303, 313 and 323 K). Furthermore, the surface morphology was investigated using the Atomic force microscopy (AFM). The effect of using different Schiff bases and temperature was also investigated. Schiff bases was synthesized and characterized via using. Fourier Transform Infrared Spectroscopy (FT-IR)and Atomic Force Microscope (AFM) characterized . The experimental results shown that Schiff bases can consider as an excellent corrosion inhibitors for carbon steel in NaCl 3
... Show MoreAbstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us
... Show MoreLow- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreThe aim of this study is to investigate the antibacterial capabilities of different coating durations of three nanoparticle (NP) coatings: molybdenum (Mo), tantalum (Ta), and zinc oxide (ZnO), and their effects on the surface characteristics of 316L stainless steel (SS). The coated substrates underwent characterization utilizing field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffractometer (XRD) techniques. The antibacterial efficacy of NPs was evaluated using the agar diffusion method. The FE-SEM and EDX images confirmed the presence of nano-sized particles of Mo, Ta, and ZnO on the surface of the substrates with perfectly symmetrical spheres and a uniform distribution of
... Show More
