Bacterial water pollution is a genuine general wellbeing concern since it causes various maladies. Antimicrobial nanofibers can be integrated by incorporating nanobiocides, for example, silver nanoparticles into nanofibers. Nylon 6 was dissolved in formic acid at a concentration of (25 wt. %) and tough antibacterial (AgNO3/Nylon) nanofibers were produced utilizing electrospinning system. Polymer solution was tested before accomplishing electrospinning process to acquire its surface tension, electric conductivity and viscosity, where every one of those parameters increased relatively with increasing concentration of (AgNO3) additions. SEM and EDX spectra were utilized to focus on the morphology, surface elemental membrane, fibers and porosize diameters. The resulted nanofiber membrane has an average fiber diameter of 139 nm for pure nylon 6 and 247 nm for (1.2 wt. % AgNO3/Nylon). The resultant polymer membrane was then tested for their ability to destroy microorganisms in water; antimicrobial tests showed that the prepared nanofibers have a high bactericidal effect against Escherichia Coli Bacteria with inhibition zone (10 mm) and antibacterial activity (99%). Likewise, these results highlight the potential utilization of these nanofibrous mats as antimicrobial agents.
A new series of Sulfamethoxazole derivatives was prepared and examined for antifibrinolytic and antimicrobial activities. Sulfamethoxazole derivatives bear heterocyclic moieties such as 1,3,4-thiadiazine {3}, pyrazolidine-3,5-diol {4} 6-hydroxy-1,3,4-thiadiazinane-2-thione {5} and [(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-yl)diazenyl] {8}. Their structures were elucidated by spectral methods (FT-IR, H1-NMR). Physical properties are also determined for all compound derivatives. Recently prepared compounds were tested for their antimicrobial activity in the laboratory. Each screened compound showed good tendency to moderate antimicrobial activity.
The antagonism of the rhizospheric bacteria toward pathogenic fungi Macrophomina phaseolina was investigated. Ten soil samples were collected from the rhizospheric zone around Cowpea root (Vignaunguiculata L.). These samples were used as the source of Arbuscular Mycorrhizal fungi (AMF) and rhizobacterial isolates. Twenty-five bacteria were isolated and evaluated as an antagonistic agent against pathogenic fungi. M. phaseolina was isolated from infected roots of Cowpea and used as a pathogen. Twenty-five bacteria were isolated and evaluated as an antagonistic agent against pathogenic fungi. M. phaseolina was isolated from infected roots of Cowpea and used as a pathogen. The synergistic effect between A. siccitolerans and (AMF) Glomusmosseae,
... Show MoreEffluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show MoreThe main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
The experiment was conducted in the fields belonging to the Department of Horticulture, College of Agricultural Engineering Sciences, University of Baghdad, at Al-Jadriya Complex / Station A, for the autumn season of 2022-2023. The aim was to study the effect of water fish irrigation and water lens plant extract foliar application on the growth and productivity of beetroot. The experiment included two factors: the first factor was water fish irrigation with five concentrations (A) Control treatment (irrigation with river water and recommended fertilization), (B) Water fish irrigation at 25% concentration, (C) water Fish irrigation at 50% concentration, (D) Water Fish irrigation at 75%
A solid Phase Extraction (SPE) followed by HPLC-UV method is described for the simultaneous quantitative determination of nine priority pollutant phenols : Phenol, 2- and 4-Nitrophenol, 2,4-Dimethylphenol, 2-, 2,4-Di-, 2,4,6-Tri-, and Penta- chlorophenol, 4 Chloro-3-methylphenol. The phenols were separated using a C-18 column with UV detector at wave length of 280nm. The Flow of mobile phase was isocratic consisted of 50:50 Acetonitrile: phosphate buffer pH=7.1, column temperature 45 C°, Flow Rate 0.7 ml/min. Calibration curves were linear (R2 = 0.9961-0.9995). The RSDs (1.301-5.805)%, LOD(39.1- 412.4) µg/L, LOQ(118.5-1250.8) µg/L, the Robustness (1.55-4.89), Ruggedness (2.82-4.00), Repeatability (2.1-4.95), Recoveries%
... Show MoreThe fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac
... Show More