The main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9 (33) orthogonal array, signal to noise ratio (S/N), main effect and analysis of variance (ANOVA). The results show that, the experimental and the predicted results are very close. It was found that the type of fiber is the most effective parameter on the plate selection, followed by filler content and then the fiber volume fraction. The best parameters combinations are ((E-glass woven roving + unidirectional carbon) fiber, 7.5% graphite filler and 30% fiber volume fraction). This combination provides good mechanical properties, high safety factor, acceptable cost, and offers weight savings on average by 40% percent as compared to aluminum alloy.
The aim of the present study was to characterize the Iraqi Tribulus terrestris for the presence of biologically active phyto-chemicals using methanolic extracts of the plant (aerial parts) by Gas Chromatography –Mass spectrometry (GC/MS), while the mass spectra of the compounds found in the extract was matched with the National Institute of Standards and Technology (NIST) library , in addition to study the antioxidant activity of plant extract , results confirmed the presence of therapeutically potent compounds in the Iraqi Tribulus terrestris extract predominantly alkaloids, flavonoids, saponins, tannins and terpenoids. Antioxidant potential of Iraqi Tribulus terrestris
... Show MoreThe ground state proton, neutron and matter densities, the corresponding rms radii and charge form factors of a dripline nuclei 6He, 11Li, 12Be and 14Be have been studied via a three–body model of (Core + n + n). The core–neutron interaction takes the form of Woods-Saxon (WS) potential. The two valence neutrons of 6He, 11Li and 12Be interact by the realistic interaction of ZBMII while those of 14Be interact via the realistic interaction of VPNP. The core and valence (halo) density distributions are described by the single-particle wave functions of the WS potential. The calculated results are discussed and compared with the experimental data. The long tail performance is clearly noticed in the calculated neutron and matter density distr
... Show MoreA real method of predication brake pad wear ,could lead to substantiol economies of time and money. This paper describes how such a procedure has been used and gives the results to establish is reliability by comparing the predicted wear with that which actually occurs in an existing service. The experimental work was carried out on three different commercial samples ,tested under different operation conditions (speed,load,time...etc)using a test ring especially modified for this purpose. Abrasive wear is mainly studied , since it is the type of wear that takes place in such arrangements. Samples wear tested in presences of sand or mud between the mating surfaces under different operational conditions of speed, load and braking time .Mec
... Show MoreWe have studied theoretically the response of atomic three- level cascade scheme
of rubidium vapor to a strong laser under conditions in which electromagnetically
induced transparency would be induced on a weak probe beam. We show that the
medium that is an opaque to a probe laser can, by applying both lasers
simultaneously, be made transparent.
Background: This review aims to discuss various canine retraction techniques using frictionless mechanics. Methods: Between 1930 and February 2022, searches were conducted about various canine retraction techniques using fixed orthodontic appliances in various databases, including PubMed Central, Science Direct, Wiley Online Library, the Cochrane Library, Textbooks, Google Scholar, Research Gate, and manual searching. Results: After removing the duplicate articles, publications that described how to use archwires to perform canine retraction with the archwires were included. Conclusions: The pros and cons of various canine retraction techniques using archwires were thoroughly discussed. T-loop is the preferred spring of all because of it
... Show MoreBackground: This review aimed at explaining different methods of canine retraction along the archwire. Methods: Searching for different methods of canine retraction using fixed orthodontic appliances was carried out using different databases, including PubMed Central, Science Direct, Wiley Online Library, the Cochrane Library, Textbooks, Google Scholar, Research Gate, and hand searching from 1930 till February 2022. Results: After excluding the duplicate articles, papers describing the methods of canine retraction along the archwires were included. The most commonly used methods are NiTi closed coil spring and elastic chain. Conclusions: Various methods of canine retraction along the archwires were explained in detail regarding their adv
... Show MoreThis article investigates the relationship between foot angle and jump stability, focusing on minimizing injury risk. Here are the key points: Importance: Understanding foot angle is crucial for improving jump stability, athletic performance, and reducing jump-related injuries like ankle sprains. Ideal Foot Angle: Research suggests a forward foot angle of around 15 degrees might be ideal for many people during jumps. This angle distributes forces evenly across the foot, lowers the center of gravity, and provides more surface area for pushing off the ground. Factors Affecting Ideal Angle: The optimal angle can vary depending on the type of jump (vertical vs. long jump), fitness level, and personal preference. Incorrect Foot Angles: Landing w
... Show MoreBackground: The aim of this study was to measure the radiopacity (RO) of modified microhybrid composite resins by adding 2 types of nanofillers (Zinc Oxide and Calcium Carbonate) in two concentrations 3% and 5% and comparing them to unmodified microhybrid composite resins and to nanofilled composite resin. Materials and Methods: Two types of composite resin were used (Microhybrid composite MH Quadrent anterior shine and Nanofilled composite resin Filtek Z350 XT), for each tested group five disk-shaped specimens (1-mm-thick and 15 mm diameter) were fabricated. The material samples were radiographed together with the aluminum step wedge. The density of the specimens was determined with a transmission densitometer and was expressed in term of
... Show MoreIn this study, industrial fiber and polymer mixtures were used for high-speed impact (ballistic) applications where the effects of polymer (epoxy), polymeric
mixture (epoxy + unsaturated polyester), synthetic rubber (polyurethane), Kevlar fiber, polyethylene fiber (ultra High molecular weight) and carbon fiber.
Four successive systems of samples were prepared. the first system component made of (epoxy and 2% graphene and 20 layer of fiber), then ballistic test was
applied, the sample was successful in the test from a distance of 7 m. or more than, by using a pistol personally Glock, Caliber of 9 * 19 mm. The second
system was consisting of (epoxy, 2% graphene, 36 layers of fiber and one layer of hard rubber), it was succeeded
This paper presents an application of a Higher Order Shear Deformation Theory (HOST 12) to problem
of free vibration of simply supported symmetric and antisymmetric angle-ply composite laminated plates.
The theoretical model HOST12 presented incorporates laminate deformations which account for the effects
of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane
displacements with respect to the thickness coordinate – thus modeling the warping of transverse crosssections more accurately and eliminating the need for shear correction coefficients. Solutions are obtained in
closed-form using Navier’s technique by solving the eigenvalue equation. Plates with varying number of