This paper presents a vibration suppression control design of cantilever beam using two piezoelectric patches. One patch was used as an actuator element, while the other was used as a sensor. The controller design was designed via the balance realization reduction method to elect the reduced order model that is most controllable and observable. the sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. Moreover, the state estimation error is proved bounded. An optimal LQR controller is designed then using the estimated states with the sliding mode observer, to suppress the vibration of a smart cantilever beam via the piezoelectric elements. The control spillover problem was avoided, by deriving an avoidance condition, to ensure the asymptotic stability for the proposed vibration control design. The numerical simulations were achieved to test the vibration attenuation ability of the proposed optimal control. For 15 mm initial tip displacement, the piezoelectric actuator found able to reduce the tip displacement to about 0.1 mm after 4s, while it was 1.5 mm in the open loop case. The current experimental results showed a good performance of the proposed LQR control law and the sliding mode observer, as well a good agreement with theoretical results.
One of the challenging issues encountered during drilling operations is the lost circulation. Numerous issues might arise because of losses, such as wasting of time and higher drilling cost. Several types of lost circulation materials have been developed and are being used to limit mud losses and avoid associated issues. Each solution has benefits and drawbacks.
In this study, a core flooding test was performed to study the effectiveness of polyacrylamide (PAM) granular gel on the reduction of the circulation lost. One common type of fracture characteristic is fractures with tips, commonly known as partially open fracture (POF). However, PAM gel therapy in POFs received little attention in prior research. Models of partly open fra
... Show MoreAl-Huweizah Marsh is considered as the largest in Iraq. This research aims to maintain thesustainability of Al-Huweizah Marsh under all circumstances and within the limits of the
available natural resources from the Iraqi side and the absence of feeding from the Iranian sidedue to the recent Iranian separation dike along the international boundaries within the marsh.
Twelve scenarios have been suggested as a first step to restore the whole marsh. But the
uncontrolled Iranian feeders and exiguity of their discharges recently, it was necessary to studyonly the northern part of the marsh as an alternative case to ensure reasonable amounts of waterfor the purpose of maintaining and restore the marsh. Hydrological routing model was
The porosity of materials is important in many applications, products and processes, such as electrochemical devices (electrodes, separator, active components in batteries), porous thin film, ceramics, soils, construction materials, ..etc. This can be characterized in many different methods, and the most important methods for industrial purposes are the N2 gas adsorption and mercury porosimetry. In the present paper, both of these techniques have been used to characterize some of Iraqi natural raw materials deposits. These are Glass Sand, Standard Sand, Flint Clay and Bentonite. Data from both analyses on the different types of natural raw materials deposits are critically examined and discussed. The results of specific surface are
... Show MoreThe purpose of the study is to investigate the effect of the constructivist model of yager in acquiring the geographical concepts among first intermediate students in geography. The study was carried on based on the null hypothesis, which states, there is no significant difference at the level of (0.05) between the experimental group that follows yager model in learning the principles of geography, and the control group that studies the same subject considering the traditional methods of learning, the. To do so, a sample of (70) first-intermediate student were chosen purposefully from two random class for the academic year (2016-2017) divided into two groups. The selected schools located at Al-rusafa side in the city of Baghdad, as well
... Show MoreCatalytic reforming of naphtha occupies an important issue in refineries for obtaining high octane gasoline and aromatic compounds, which are the basic materials of petrochemical industries. In this study, a novel of design parameters for industrial continuous catalytic reforming reactors of naphtha is proposed to increase the aromatics and hydrogen productions. Improving a rigorous mathematical model for industrial catalytic reactors of naphtha is studied here based on industrial data applying a new kinetic and deactivation model. The optimal design variables are obtained utilizing the optimization process in order to build the model with high accuracy and such design parameters are then applied to get the best configuration of this pro
... Show MoreSuccessfully, theoretical equations were established to study the effect of solvent polarities on the electron current density, fill factor and efficiencies of Tris (8-hydroxy) quinoline aluminum (Alq3)/ ZnO solar cells. Three different solvents studied in this theoretical works, namely 1-propanol, ethanol and acetonitrile. The quantum model of transition energy in donor–acceptor system was used to derive a current formula. After that, it has been used to calculate the fill factor and the efficiency of the solar cell. The calculations indicated that the efficiency of the solar cell is influenced by the polarity of solvents. The best performance was for the solar cell based on acetonitrile as a solvent with electron current density of (5.0
... Show MoreThe result of a developed mathematical model for predicting the design
parameters of the fiber Raman amplifier (FRA) are demonstrated. The amplification
parameters are tested at different pump power with different fiber length. Recently,
the FRA employed in optical communication system to increase the repeater distance
as will as the capacity of the communication systems. The output results show, that
high Raman gain can be achieved by high pumping power, long effective area that
need to be small for high Raman gain. High-stimulated Raman gain coefficient is
recommended for high Raman amplifier gain, the low attenuation of the pump and the
transmitted signal in the fiber lead to high Raman gain.
The finite element approach is used to solve a variety of difficulties, including well bore stability, fluid flow production and injection wells, mechanical issues and others. Geomechanics is a term that includes a number of important aspects in the petroleum industry, such as studying the changes that can be occur in oil reservoirs and geological structures, and providing a picture of oil well stability during drilling. The current review study concerned about the advancements in the application of the finite element method (FEM) in the geomechanical field over a course of century.
Firstly, the study presented the early advancements of this method by development the structural framework of stress, make numerical computer solution
... Show MoreHistory matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir mo
... Show MoreWaste materials might be utilized in various applications, such as sustainable roller compacted concrete pavements (RCCP), to lessen the negative environmental consequences of construction waste. The impacts of utilizing (brick, thermostone, granite, and ceramic) powders on the mechanical characteristics of RCCP are investigated in this study. To achieve this, the waste materials were crushed, grounded, and blended before being utilized as filler in the RCCP. After the mixes were prepared, compressive strength, splitting tensile strength, flexural strength, water absorption, density, and porosity were all determined. According to the research results, adding some of these powders, mainly brick and granite powder, enhances the mechanical
... Show More