In this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show that the relative density, microhardness and fracture strength of nanocomposites are significantly improved at low contents of Cr2O3 and MWCNTs. The increase of MWCNT’s content in the nanocomposites has adversely affected due to increasing the tangle and interaction of MWCNTs with each other, which leads to agglomeration in the nanocomposites. Increasing of Cr2O3 content in nanocomposites increases formation of Al2O3-Cr2O3 solid solution that actually requires the high sintering temperature to achieve good densification. The fracture toughness of Al2O3/Cr2O3-MWCNTs nanocomposites was enhanced by increasing the carbon nanotube content.
The galvanic corrosion of the (Cu - Fe), (Cu - Zn) and (Fe - Zn) couples have been investigated in 3.5% NaCl solution, 40ºC, different velocities (Re = 5000, 10000 and 15000) and different area ratio’s of cathode to anode (AR= 0.5,1 and 2), by using commercial metal pipe (cylindrical tube).The Zero Resistance Ammeter has been used to measure the galvanic current (Ig) and galvanic potential (Eg) with time. The galvanic current density increases with increasing velocity (Re) and the area ratio (AR). The galvanic potential (Eg) is shifted to less negative with increasing velocity (Re) and the area ratio (AR). A statistical relations for the galvanic current density and galvanic potential as a function of (Re). and the area ratio had been
... Show More
For criminal investigations, fingerprints remain the most reliable form of personal identification despite developments in other fields like DNA profiling. The objective of this work is to compare the performance of both commercial charcoal and activated carbon powder derived from the Alhagi plant to reveal latent fingerprints from different non-porous surfaces (cardboard, plain glass, aluminum foil sheet, China Dish, Plastic, and Switch). The effect of three variables on activated carbon production was investigated. These variables were the impregnation ratio (the weight ratio of KOH: dried raw material), the activation temperature, and the activation time. The effect factors were investigated using Central Composite Design
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreBackground and objectives: Whether to use a cold scalpel or laser surgery to remove a lesion in the skin of the craniofacial area is the main question the surgeon asks him- or herself to do. The study tried to extend the literature with data that may help the surgeons to choose the right method. Methods: Thirty patients with intra- and extraoral craniofacial skin lesions managed by Carbone dioxide (CO2) laser surgery. Results: The most common type of lesion treated was melanocytic nevi (15 patients; 50%). Conclusion: The main complication of CO2 laser surgery is the remaining permanent hypopigmentation of the treated area; however, the CO2 laser has many advantages (especially at the time of surgery) making it a good choice for the manageme
... Show MoreFor criminal investigations, fingerprints remain the most reliable form of personal identification despite developments in other fields like DNA profiling. The objective of this work is to compare the performance of both commercial charcoal and activated carbon powder derived from the Alhagi plant to reveal latent fingerprints from different non-porous surfaces (cardboard, plain glass, aluminum foil sheet, China Dish, Plastic, and Switch). The effect of three variables on activated carbon production was investigated. These variables were the impregnation ratio (the weight ratio of KOH: dried raw material), the activation temperature, and the activation time. The effect factors were investigated using Central Composite Design (CCD) softwa
... Show MoreCarbon dioxide geo-sequestration (CGS) into sediments in the form of (gas) hydrates is one proposed method for reducing anthropogenic carbon dioxide emissions to the atmosphere and, thus reducing global warming and climate change. However, there is a serious lack of understanding of how such CO2 hydrate forms and exists in sediments. We thus imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via x-ray micro-computed tomography in 3D in-situ. A substantial amount of gas hydrate (∼17% saturation) was observed, and the stochastically distributed hydrate clusters followed power-law relations with respect to their size distributions and surface area-volume relationships. The layer-
... Show MoreA hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show MorePreviously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of t
... Show MoreCorrosion rate tests were carried out on carbon steel under concentration cells conditions of oxygen and sodium chloride. The effect of aeration in one compartment on the corrosion rate of both coupled metals was determined. In addition, the effects of time and temperatures on the corrosion rate of both coupled metals and galvanic currents between them were investigated. Corrosion potentials for the whole range of operating conditions under concentration cell conditions were also studied. The results showed that under aeration condition, the formation of concentration cell caused a considerable corrosion rate of the Carbon steel specimens coupled in different concentrations of O2 and NaCl due to the galvanic effect
... Show More