This paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algorithm and other two state-of-the-art algorithms. This study showed that the proposed method is effective and produces trajectories with satisfactory results.
Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo
... Show MoreThe Ant System Algorithm (ASA) is a member of the ant colony algorithms family in swarm intelligence methods (part of the Artificial Intelligence field), which is based on the behavior of ants seeking a path and a source of food in their colonies. The aim of This algorithm is to search for an optimal solution for Combinational Optimization Problems (COP) for which is extremely difficult to find solution using the classical methods like linear and non-linear programming methods.
The Ant System Algorithm was used in the management of water resources field in Iraq, specifically for Haditha dam which is one of the most important dams in Iraq. The target is to find out an efficient management system for
... Show MoreThis study describes how fuzzy logic control FLC can be applied to sonars of mobile robot. The fuzzy logic approach has effects on the navigation of mobile robots in a partially known environment that are used in different industrial and society applications. The fuzzy logic provides a mechanism for combining sensor data from all sonar sensors which present different information. The FLC approach is achieved by means of Fuzzy Decision Making method type of fuzzy logic controller. The proposed controller is responsible for the obstacle avoidance of the mobile robot while traveling through a map from a home point to a goal point. The FLC is built as a subprogram based on the intelligent architecture (IA). The software program uses th
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreCities have witnessed great changes since the planning of the first cities. This is due to the increase in population and problems in services which affect urban security. As such, urban security is directed and affected by the nature of city planning and the types of services. Besides, the kind of services plays an imminent place in providing urban security at all levels. Other factors that influence urban security can be limited to the increase of population, economic and social changes. This leads to losing urban control. This study will explore the historical chronology to identify weaknesses in urban planning since its dawn and reaching solutions to protect urban security. The importance of the research lies in achieving urban secur
... Show MoreCities have witnessed great changes since the planning of the first cities. This is due to the increase in population and problems in services that affect urban security. As such, urban security is directed and affected by the nature of city planning and the types of services. Besides, the kind of services plays an imminent place in providing urban security at all levels. Other factors that influence urban security can be limited to the increase of population, economic and social changes. This leads to losing urban control. This study will explore the historical chronology to identify weaknesses in urban planning since its dawn and reaching solutions to protect urban security. The importance of the research lies in achieving urban securi
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show More