Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
In this paper we find the exact solution of Burger's equation after reducing it to Bernoulli equation. We compare this solution with that given by Kaya where he used Adomian decomposition method, the solution given by chakrone where he used the Variation iteration method (VIM)and the solution given by Eq(5)in the paper of M. Javidi. We notice that our solution is better than their solutions.
Background: This study aimed to determine the gender of a sample of Iraqi adults using the mesio-distal width of mandibular canines, inter-canine width and standard mandibular canine index, and to determine the percentage of dimorphism as an aid in forensic dentistry. Materials and methods: The sample included 200 sets of study models belong to 200 subjects (100 males and 100 females) with an age ranged between 17-23 years. The mesio-distal crown dimension was measured manually, from the contact points for the mandibular canines (both sides), in addition to the inter-canine width using digital vernier. Descriptive statistics were obtained for the measurements for both genders; paired sample t-test was used to evaluate the side difference of
... Show MoreIn this paper we deal with the problem of ciphering and useful from group isomorphism for construct public key cipher system, Where construction 1-EL- Gamal Algorithm. 2- key- exchange Algorithm
Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
This paper is concerned with introducing and studying the first new approximation operators using mixed degree system and second new approximation operators using mixed degree system which are the core concept in this paper. In addition, the approximations of graphs using the operators first lower and first upper are accurate then the approximations obtained by using the operators second lower and second upper sincefirst accuracy less then second accuracy. For this reason, we study in detail the properties of second lower and second upper in this paper. Furthermore, we summarize the results for the properties of approximation operators second lower and second upper when the graph G is arbitrary, serial 1, serial 2, reflexive, symmetric, tra
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show More