This paper has investigated experimentally the dynamic buckling behavior of AISI 303 stainless steel Aluminized and as received long columns. These columns, hot-dip aluminized and as received, are tested under dynamic buckling, 22 specimens, without aluminizing (type 1), and 50 specimens, with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), are tested under dynamic compression loading and under dynamic combined loading (compression and bending) by using a rotating buckling test machine. The experimental results are compared with Perry Robertson interaction formula that used for long columns. Greenhill formula is used to get a mathematical model that descripts the buckling behavior of the specimens of type (1) under dynamic compression loading. The experimental results obtained show an advantageous influence of hot-dip aluminizing treatment on dynamic buckling behavior of AISI 303 stainless steel long columns. The improvement based on the average value of critical buckling stress, are as follow: (64.8 %) for long columns type (2), compared with columns type (1), under dynamic compression loading, and (56.6 %) for long columns type (2), compared with columns type (1), under dynamic combined loading, and (33.3 %) for long columns type (2) compared with Perry Robertson critical buckling stress.
An experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum
... Show MoreThis paper studies the effects of stiffeners on shear lag in steel box girders with stiffened flanges. A three-dimensional linear finite element analysis using STAAD.Pro V8i program has been employed to evaluate and determine the actual top flange stress distribution and effective width in steel box girders. The steel plates of the flanges and webs have been modeled by four-node isoparametric shell elements, while the stiffeners have been modeled as beam elements. Different numbers (4, 8, and 15) for the steel stiffeners have been used in this study to establish their effects on the shear lag and longitudinal stresses in the flange. Using stiffeners reduced the magnitude of the top flange longitudinal stresses about 40%, but did
... Show MoreThe present study deals with the optimum design of self supporting steel communication towers. A special technique is used to represent the tower as an equivalent hollow tapered beam with variable cross section. Then this method is employed to find the best layout of the tower among prespecified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the tower. The variables are the base and the top dimensions, the number of panels for the tower and member's cross section areas. The formulations of design constraints are based on the requirements of EIA and ANSI codes for allowable stresses in the members
Experimental research was carried out on eight reinforced concrete beams to study the embedded length of the longitudinal reinforcement. Six beams were casted using self compacted concrete, and the two other beams were casted using normal concrete. The test was carried out on beams subjected to two point loads. The strain and the slip of the main reinforcement have been measured by using grooves placed during casting the beams at certain places. The measured strain used to calculate the longitudinal stresses (bond stress) surrounding the bar reinforcement, The study was investigated the using of self compacted concrete SCC on the embedded length of reinforcing bars, and comparing the results with normal concrete. The test results show th
... Show MoreThe she/teacher is considered one of the basics of the educational process for its essential role in education and teaching the kindergarten child, thus its lack to construct social relations in side the kindergarten environment working in it regarded one of the shortcoming factors she is suffering from which should be manipulated, because it could effect its enthusiasm to work in the kindergarten according to what has mentioned, the researcher presents the following objective:-
- Identifying level of social enhancement for the kindergarten teachers via the test of the following hypothesis:-
The aim of this study is to investigate the behavior of composite castellated beam in which the concrete slab and steel beam connected together with headed studs shear connectors. Four simply supported composite beams with various degree of castellation were tested under two point static loads. One of these beams was built up using standard steel beam, i.e. without web openings, to be a reference beam. The other three beams were fabricated from the same steel I-section with various three castellation ratios, (25, 35, and 45) %. In all beams the concrete slab has the same section and properties. Deflection at mid span of all beams was measured at each 10 kN load increment. The test results show that the castellation process leads to
... Show MorePotentiostatic polarization and weight loss methods have been used to investigate the corrosion behavior of carbon steel in sodium chloride solution at different concentrations (0.1, 0.4 and 0.6) M under the influence of temperatures ( 293, 298, 303, 308 and 313) K. The inhibition efficiency of the amoxicillin drug on carbon steel in 0.6 M NaCl has also been studied based on concentration and temperature. The corrosion rate showed that all salt concentrations ( NaCl solution) resulted in corrosion of carbon steel in varying ratio and 0.6 M of salt solution was the highest rate (50.46 g/m².d). The results also indicate that the rate of corrosion increases at a temperature of 313 K.. Potentiodynamic polarization studi
... Show More