Preferred Language
Articles
/
alkej-24
The Effect of Restriction Shape On Laminar Natural Convection Heat Transfer In A Vertical Circular Tube
...Show More Authors

Natural convection heat transfer is experimentally investigated for laminar air flow in a vertical circular tube by using the boundary condition of constant wall heat flux in the ranges of (RaL) from (1.1*109) to (4.7*109). The experimental set-up was designed for determining the effect of different types of restrictions placed at entry of heated tube in bottom position, on the surface temperature distribution and on the local and average heat transfer coefficients. The apparatus was made with an electrically heated cylinder of a length (900mm) and diameter (30mm). The entry restrictions were included a circular tube of same diameter as the heated cylinder but with lengths of (60cm, 120cm), sharp-edge and bell-mouth. The surface temperature along the cylinder surface for same heat flux would be higher values for circular restriction with length of (120cm) and would be smaller values for bell-mouth restriction. The results show that the local Nusselt number (Nux) and average Nusselt numberare higher for bell-mouth restriction and smaller values for (120cm) restriction. For all entry shape restrictions, the results show that the Nusselt number values increases as the heat flux increases. From the present work an empirical correlations were obtained in a form of (Log) versus (Log) for each case investigated and obtained a general correlation for all cases which reveals the effect of restriction existence on the natural convection heat transfer process in a vertical circular tube.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Free Convective Heat Transfer with Different Sections Lengths Placed at the Exit of a Vertical Circular Tube subjected to a Constant Heat Flux
...Show More Authors

A free convective heat transfer from the inside surface of a uniformly heated vertical circular tube has been experimentally investigated under a constant wall heat flux boundary condition for laminar air flow in the ranges of RaL from 6.9108 to 5109. The effect of the different sections (restrictions) lengths placed at the exit of the heated tube on the surface temperature distribution, the local and average heat transfer coefficients were examined. The experimental apparatus consists of aluminum circular tube with 900 mm length and 30 mm inside diameter (L/D=30). The exit sections (restrictions) were included circular tubes having the same inside diameter as the heated tube but with different lengths of

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Laminar Natural Convection of Newtonian and Non – Newtonian Fluids Inside Triangular Enclosure
...Show More Authors

In the present work, steady two – dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103Ra ≤ 105), with non-dimensional parameter (NE) of Prandtl – Eyring model ranging from (0 to 10), and modified Prandtl number take in the range (Pr* =1,10, and 100). Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Magnetic Field with Nanofluid on Heat Transfer in a Horizontal Pipe
...Show More Authors

This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 20 2019
Journal Name
Al-khwarizmi Engineering Journal
Natural-Convection Phenomenon from a Finned Heated Vertical Tube: Experimental Analysis
...Show More Authors

       In this work, an experimental analysis is made to predict the thermal performance of the natural-convection phenomenon from a heated vertical externally finned-tube to surrounding air through an open-ended enclosure. Two different configurations of longitudinal rectangular fin namely, continuous and interrupted are utilized with constant thickness, different numbers, and different heights are extended radially on the outer surface of a heated tube. The tube is heated electrically from inner surface with five varied power input magnitudes. The effect of fins configuration, fins number, fins height, and heat flux of the inner tube surface on the thermal performance of natural c

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
NATURAL CONVECTION HEAT TRANSFER IN AN INCLINED CIRCULAR CYLINDER
...Show More Authors

Experiments were carried out to investigate natural convection heat transfer in an inclined uniformly heated circular cylinder . The effects of surface heat flux and angle of inclination on the temperature and local Nusselt number variations along the cylinder surface are discussed . The investigation covers heat flux range from 92 W/m² to 487 W/m², and angles of inclination 0° ( horizontal) , 30° , 60° and 90° (vertical) . Results show an increase in the natural convection as heat flux increases and as angle of inclination moves from vertical to horizontal position. An empirical equation of average Nusselt number as a function of Rayliegh number was deduced for each angle of inclination .

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Effect of Oscillatory Motion in Enhancing the Natural Convection Heat Transfer from a Vertical Channel
...Show More Authors

This paper reports an experimental study regarding the influence of vertical oscillations on the natural convection heat transfer from a vertical channel. An experimental set-up was constructed and calibrated; the vertical channel was tested in atmosphere at 25o
C. The channel-to-ambient temperature difference was varied with the power supply to the electrical heater ranging between
15W to 70W divided into five levels. Data sets were measured under different operating condition from a test rig under six vibrating velocities (VVs) levels ranging from (5-30 m/s) in addition to the stationary state. The results show that the maximum heat transfer enhancement factor (E) occurs at Rayleigh number (Ra=2.328×103 ) and vibrational Reynol

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Natural Convection Heat Transfer in an Inclined Open-Ended Square Cavity with Partially Active Side Wall
...Show More Authors

This paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 103-106 with Prandtl number 0.71

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Effect of Solid Particle Properties on Heat Transfer and Pressure Drop in Packed Duct
...Show More Authors

This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.

... Show More
View Publication Preview PDF
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Experimental Study For a Laminar Natural Convection Heat Transfer From an Isothermal Heated Square Plate With and Without Circular Hole
...Show More Authors

An experimental investigation of natural convection heat transfer from an isothermal horizontal,vertical and inclined heated square flat plates with and without circular hole, were carried out in two cases, perforated plates without an impermeable adiabatic hole "open core" and perforated plates with an impermeable adiabatic hole "closed core" by adiabatic plug. The experiments covered the laminar region with a range of Rayleih number of (1.11x106 ≤RaLo≤4.39x106 ), at Prandtle number (Pr=0.7). Practical experiments have been done with variable inclination angles from horizon (Ф=0o ,45o,90o,135oand 180o),facing upward (0o≤Ф<90o), and downward (90o
≤Ф<180o). The results showed that the temperature gradient increases whi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Investigation of the Effect of Curvature Ratio on Heat Transfer in Double Pipe Helical Heat Exchanger
...Show More Authors

Different parameters of double pipe helical coil were investigation experimentally. Four coils were used; three with a curvature ratio (0.037, 0.031, and 0.028) and 11mm diameter of the inner tube while the fourth with 0.033 curvature ratio and 13 mm diameter of the inner tube. The hot water flow in the inner tube whereas the cold water flows in the annulus. The inlet temperatures of hot and cold water are 50 0C and 18 0C respectively. The inner mass flow rate ranges from 0.0167 to 0.0583 kg/s. The results show the Nusselt number increase with increase curvature ratio. The Nusselt number of the coil with 0.037 curvature ratio increases by approximately 12.3 % as compare with 0.028 curvature ratio. The results also r

... Show More
View Publication Preview PDF
Crossref