A new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of the compressed signal relative to the size of the uncompressed signal. The proposed algorithms where fulfilled with the use of Matlab package
This paper presents a study of a syndrome coding scheme for different binary linear error correcting codes that refer to the code families such as BCH, BKLC, Golay, and Hamming. The study is implemented on Wyner’s wiretap channel model when the main channel is error-free and the eavesdropper channel is a binary symmetric channel with crossover error probability (0 < Pe ≤ 0.5) to show the security performance of error correcting codes while used in the single-staged syndrome coding scheme in terms of equivocation rate. Generally, these codes are not designed for secure information transmission, and they have low equivocation rates when they are used in the syndrome coding scheme. Therefore, to improve the transmiss
... Show Moreتعد مجالات الصورة وعلاماتها الحركية حضوراً دلالياً للاتصال العلامي واتساعاً في الرابطة الجدلية ما بين الدوال ومداليها، التي تقوم بها الرؤية الاخراجية لإنتاج دلالات اخفائية تمتلك جوهرها الانتقالي عبر الافكار بوصفها معطيات العرض، ويسعى التشفير الصوري الى بث ثنائية المعنى داخل الحقول المتعددة للعرض المسرحي، ولفهم المعنى المنبثق من هذه التشفيرات البصرية، تولدت الحاجة لبحث تشكيل هذه التشفيرات وكيفية تح
... Show MoreIn this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreBovine milk is one of the richest nutrients that contain minerals and vitamins that enhance immunity, especially in children, but because many children do not want to drink the raw milk, therefore this study aimed to enhance the sensory characteristics of raw milk by using hibiscus plant extract, which is characterized by red color and distinctive flavor as well as studying the effect of aqueous extract of Hibiscus sabdariffa on inhibiting the growth of microorganisms, by using three concentrations of the aqueous extract (0.5, 1.0 and 1.5%), where the statistical results showed a significant difference (P≤0.05) between the concentrations in color, texture and general acceptance, and the best results appeared when using
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More 
        