In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between the structure and fluid by using a Newmark’s implicit time integration scheme. The results obtained from this paper show that the proposed modeling can be used for a quick assessment of the wind turbine blades taking the fluid-structure interaction into account. This modeling can also be a useful tool for the analysis of airplane propeller blades.
Background: The best material for dental implants is polyetherketoneketone (PEKK). However, this substance is neither osteoinductive nor osteoconductive, preventing direct bone apposition. Modifying the PEKK with bioactive elements like strontium hydroxyapatite is one method to overcome this (Sr-HA). Due to the technique's capacity to provide better control over the coating's properties, RF magnetron sputtering has been found to be a particularly useful technique for deposition. Materials and methods : With specific sputtering conditions, the RF magnetron technique was employed to provide a homogeneous and thin coating on Polyetherketoneketone substrates.. the coatings were characterized by Contact angle, adhesion test, X-ray
... Show MoreComposite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show MoreIn this research Epoxy resin was reinforced by nano alumina (AL2O3) particles in grain size(25-30 nm) with two weight ratios (2,4)% then compared with pure Epoxy. Four mechanical tests were performed on these materials include Hardness, flexural, impact & compression strengths before and after immersion in tap water and chemical solutions (CH3COOH) acid, (KOH) base at (0.5N) ,The diffusivity coefficients of all prepared samples were calculate after immersion in water and chemical solutions mentioned above , the results were showed that the Flexural, Impact & Hardness increase after addition the ceramic particles (AL2O3) while the immersion process results showed illustrated different values from sample to other.
The study aimed to investigate the effect of different times as follows 0.5, 1.00, 2.00 and 3.00 hrs, type of solvent (acetone, methanol and ethanol) and temperature (~ 25 and 50)ºc on curcumin percentage yield from turmeric rhizomes. The results showed significant differences (p? 0.05) in all variables. The curcumin content which were determined spectrophotometrically ranged between (0.55-2.90) %. The maximum yield was obtained when temperature, time and solvent were 50ºC, 3 hrs and acetone, respectively.
High-performance liquid chromatographic methods are used for the determination of water-soluble vitamins with UV-Vis. Detector. A reversed-phase high-performance liquid chromatographic has been developed for determination of water-soluble vitamins. Identification of compounds was achieved by comparing their retention times and UV spectra with those of standards solution. Separation was performed on a C18 column, using an isocratic 30% (v/v) acetonitril in dionozed water as mobile phase at pH 3.5 and flow rate 1.0m/min. The method provides low detection and quantification limits, good linearity in a large concentration interval and good precision. The detection limits ranged from 0.01 to 0.025µg/ml. The accuracy of the method was
... Show MoreAn experiment was conducted in pots under field conditions during fall seasons of 2017 and 2018. This study aimed to improve a weak growth of seedlings under salt stress in sorghum. Three factors were studied. 1st factor was three cultivars (Inqath, Rabeh, and Buhoth70). 2nd factor was seed priming (primed and unprimed seed). Seed were primed by soaking for 12 hours in a solution containing 300 + 70 mg L−1 of gibberellic (GA3) and salicylic (SA) acids, respectively. 3rd factor was irrigation with saline water (6, 9 and 12 dS m−1) resulting from dissolving sodium chloride in distilled water in addition to control treatment (distilled water). Randomized complete block design was used with four replications. In both seasons: the re
... Show MoreIn this paper, quantified study of the biofilm formed by Klebsiella pneumoniae isolated from urine specimen of patient suffering from acute urinary tract infection (UTI) on catheter, stainless-steel and glass coupon surfaces, as well as determine the relationship between time contact and biofilm progression using crystal-violet binding assay based on the values of optical density at 620nm of the crystal violet stain which bonded total biofilm biomass by resolubizing with 99.9% ethanol at the specific interval times. The result showed biofilm formed on three tested surfaces but in different degrees. According to obtained data, the catheter coupons presents a higher capability to attract bacteria cell and biofilm formation followed by glas
... Show More