In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is applied to learn the control structure for self-tuning PID type neuro-controller. Where the neural network is used to minimize the error function by adjusting the PID gains. Simulation results show that the self-tuning PID scheme can deal with a large unknown nonlinearity
In wireless broadband communications using single-carrier interleave division multiple access (SC-IDMA) systems, efficient multiuser detection (MUD) classes that make use of joint hybrid decision feedback equalization (HDFE)/ frequency decision-feedback equalization (FDFE) and interference cancellation (IC) techniques, are proposed in conjunction with channel coding to deal with several users accessing the multipath fading channels. In FDFE-IDMA, the feedforward (FF) and feedback (FB) filtering operations of FDFE, which use to remove intersymbol interference (ISI), are implemented by Fast Fourier Transforms (FFTs), while in HDFE-IDMA the only FF filter is implemented by FFTs. Further, the parameters involved in the FDFE/
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreThe dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
In this paper, some relations between the flows and the Enveloping Semi-group were studied. It allows to associate some properties on the topological compactification to any pointed flows. These relations enable us to study a number of the properties of the principles of flows corresponding with using algebric properties. Also in this paper proofs to some theorems of these relations are given.
This article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.
In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator. e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated. e sucient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to conrm the theoretical results.
In this study, we set up and analyze a cancer growth model that integrates a chemotherapy drug with the impact of vitamins in boosting and strengthening the immune system. The aim of this study is to determine the minimal amount of treatment required to eliminate cancer, which will help to reduce harm to patients. It is assumed that vitamins come from organic foods and beverages. The chemotherapy drug is added to delay and eliminate tumor cell growth and division. To that end, we suggest the tumor-immune model, composed of the interaction of tumor and immune cells, which is composed of two ordinary differential equations. The model’s fundamental mathematical properties, such as positivity, boundedness, and equilibrium existence, are exami
... Show MoreIn this study, a cholera model with asymptomatic carriers was examined. A Holling type-II functional response function was used to describe disease transmission. For analyzing the dynamical behavior of cholera disease, a fractional-order model was developed. First, the positivity and boundedness of the system's solutions were established. The local stability of the equilibrium points was also analyzed. Second, a Lyapunov function was used to construct the global asymptotic stability of the system for both endemic and disease-free equilibrium points. Finally, numerical simulations and sensitivity analysis were carried out using matlab software to demonstrate the accuracy and validate the obtained results.
The current research aims to identify the self-regulation of university students, as well as to identify the significance of the difference in self-regulation according to the variable of sex (male-female), specialization (scientific-human), and grade (first-fourth). To achieve the research objectives, the two researchers developed a scale of (28) items about self-regulation According to the theory of (Pandora, 1991). The scale was administered to (500) students from the first and fourth stages of Al -Mustansiriyah University who were selected based on the random stratification method for the 2020/2021 academic year. The results showed that university students have a good level of self-regulation. There are no significant differences in
... Show More