Preferred Language
Articles
/
alkej-160
Obstacles Avoidance for Mobile Robot Using Enhanced Artificial Potential Field
...Show More Authors

In this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint repulsive force and the off-sensors attractive force. These secondary forces and modified primary forces are merged to overcomethe drawbacks like dead ends and U shape traps. The proposed algorithm acquirs information of unknown environment by collecting the readings of five infrared sensors with detecting range of 0.8 m. The proposed algorithm is applied on two different environments also it is compared with another algorithm. The simulation and experimental results confirm that the proposed algorithm always converges to the desired target. In addition, the performance of algorithm is well and meets the requirements in terms of saved time and computational resources.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 22 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The impact of international Accounting Standard No (21) in reducing tax obstacles : applied research in the General Authority for Taxes .
...Show More Authors

               The research aimed to shed light on the impact of international Accounting Standard No (21) on tax obstacles represented by (tax evasion, double taxation) The financial statements of a group of banks operating in the private sector were relied upon to know the impact of the standard on tax obstacles, as well as knowing the amount of amounts, The researcher relied on the method of financial analysis of that data, which was obtained from the website of the Securities Commission, and conducted personal interviews with a number of university professors, chartered accountants, financial experts, banks, and the General Authority for Taxes to benefit from their

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Journal Of Al-nahrain University Science
ENHANCED MENEZES-VANESTONE ELLIPTIC CURVES CRYPTOSYSTEM
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Sumer Journal For Pure Science
COVID-19Disease Diagnosis using Artificial Intelligence based on Gene Expression: A Review
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Increasing Safety in Highways Transit Systems by Using Ethical Artificial Intelligence AI
...Show More Authors

“Smart city” projects have become fully developed and are actively using video analytics. Our study looks at how video analytics from surveillance cameras can help manage urban areas, making the environment safer and residents happier. Every year hundreds of people fall on subway and railway lines. The causes of these accidents include crowding, fights, sudden health problems such as dizziness or heart attacks, as well as those who intentionally jump in front of trains. These accidents may not cause deaths, but they cause delays for tens of thousands of passengers. Sometimes passers-by have time to react to the event and try to prevent it, or contact station personnel, but computers can react faster in such situations by using ethical

... Show More
View Publication
Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Crescent Moon Visibility: A New Criterion using Deep learned Artificial Neural-Network
...Show More Authors

     Many authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai

... Show More
Preview PDF
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Wed Mar 05 2025
Journal Name
Lecture Notes In Networks And Systems
Using Artificial Intelligence to Enhance Family Cohesion and Promote Positive Social Values
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Jan 15 2003
Journal Name
كلية الترا ث الجامعة
Estimating an Exponentiated Expanded Power Function Distribution Using an Artificial Intelligence Algorithm
...Show More Authors

The distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.