Preferred Language
Articles
/
alkej-159
Simulation Study of Mass Transfer Coefficient in Slurry Bubble Column Reactor Using Neural Network
...Show More Authors

 

The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease with increasing solid concentration. From the experimental work 1575 data points for three systems, were collected and used to predicate  kLa. Using SPSS 17 software, predicting of overall volumetric mass-transfer coefficient (kLa) was carried out and an output of 0.05264 sum of square error was obtained for trained data and 0.01064 for test data.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
...Show More Authors
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem</p> ... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Robust Estimations for power Spectrum in ARMA(1,1) Model Simulation Study
...Show More Authors

Simulation Study

 

Abstract :

Robust statistics Known as, Resistance to mistakes resulting of the deviation of Check hypotheses of statistical properties ( Adjacent Unbiased  , The Efficiency of data taken from a wide range of probability distributions follow a normal distribution or a mixture of other distributions with different standard deviations.

 power spectrum function lead to, President role in the analysis of Stationary random processes, organized according to time, may be discrete random variables or continuous. Measuring  its total capacity as frequency function.

Estimation methods Share with

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
An Investigation Study of Thinning Distribution in Single Point Incremental Forming Using FEM Analysis
...Show More Authors

Single Point Incremental Forming (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The sheet part is locally deformed through horizontal slices. The moving locus of forming tool (called as toolpath) in these slices constructed to the finished part was performed by the CNC technology. The toolpath was created directly from CAD model of final product. The forming tool is a Ball-end forming tool, which was moved along the toolpath while the edges of sheet material were clamped rigidly on fixture.

This paper presented an investigation study of thinning distribution of a conical shapes carried out by incremental forming and the validation of finite element method to evaluate the limits of the p

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Reducing False Notification in Identifying Malicious Application Programming Interface(API) to Detect Malwares Using Artificial Neural Network with Discriminant Analysis
...Show More Authors

Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
A Study of a-Si:H Absorption Edge Using Dunstan’s Model
...Show More Authors

The optical absorption data of Hydrogenated Amorphous Silicon was analyzed using a Dunstan model of optical absorption in amorphous semiconductors. This model introduces disorder into the band-band absorption through a linear exponential distribution of local energy gaps, and it accounts for both the Urbach and Tauc regions of the optical absorption edge.Compared to other models of similar bases, such as the O’Leary and Guerra models, it is simpler to understand mathematically and has a physical meaning. The optical absorption data of Jackson et al and Maurer et al were successfully interpreted using Dunstan’s model. Useful physical parameters are extracted especially the band to the band energy gap , which is the energy gap in the a

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Dec 02 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Application Or Innovation In Engineering & Management (ijaiem)
Probabilistic Neural Network for User Authentication Based on Keystroke Dynamics
...Show More Authors

Computer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul

... Show More
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Artificial Neural Network Model for Wastewater Projects Maintenance Management Plan
...Show More Authors

Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
BUILD AN EFFICIENT INVESTMENT PORTFOLIO USING THE WILLIAM RATIO (EMPIRICAL STUDY) IN IRAQ STOCK EXCHANGE: BUILD AN EFFICIENT INVESTMENT PORTFOLIO USING THE WILLIAM RATIO (EMPIRICAL STUDY) IN IRAQ STOCK EXCHANGE
...Show More Authors

ABSTRACT

            This study aimed to choose top stocks through technical analysis tools specially the indicator called (ratio of William index), and test the ability of technical analysis tools in building a portfolio of shares efficient in comparison with the market portfolio. These one technical tools were used for building one portfolios in 21 companies on specific preview conditions and choose 10 companies for the period from (March 2015) to (June 2017). Applied results of the research showed that Portfolio yield for companies selected according to the ratio of William index indicator (0.0406) that

... Show More
View Publication Preview PDF