Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventional PID controller in the robot manipulator is replaced by NN self tuning PID controller so as to achieve trajectory tracking with minimum steady-state error and improving the dynamic behavior (overshoot). The simulation results showed that the proposed controller has strong self-adaptability over the conventional PID controller.
With the recent growth of global populations, main roads in cities have witnessed an evident increase in the number of vehicles. This has led to unprecedented challenges for authorities in managing the traffic of ambulance vehicles to provide medical services in emergency cases. Despite the high technologies associated with medical tracks and advanced traffic management systems, there is still a current delay in ambulances’ attendance in times of emergency to provide patients with vital aid. Therefore, it is indispensable to introduce a new emergency service system that enables the ambulance to reach the patient in the least congested and shortest paths. However, designing an effici
Integrating Renewable Energy (RE) into Distribution Power Networks (DPNs) is a choice for efficient and sustainable electricity. Controlling the power factor of these sources is one of the techniques employed to manage the power loss of the grid. Capacitor banks have been employed to control phantom power, improving voltage and reducing power losses for several decades. The voltage sag and the significant power losses in the Iraqi DPN make it good evidence to be a case study proving the efficiency enhancement by adjusting the RE power factor. Therefore, this paper studies a part of the Iraqi network in a windy and sunny region, the Badra-Zurbatya-11 kV feeder, in the Wasit governorate. A substation of hybrid RE sources is connected to this
... Show MoreThe study of history has begun to become increasingly important for those interested in the field of education in general, and physical education and sports sciences in particular. It is a recent study of the past and relying on it. Therefore, studying the history of sports for people with disabilities and their development is of great importance, as it is one of the means to measure the extent of development of societies and their culture in this field. Weightlifting is a sport for people with motor disabilities, and the way to play is for the contestant to lie on the bench (ping bar) and most often the legs are tied to the bench to ensure that the hip and legs do not contribute to the lifting process with the arms, when the player grabs t
... Show MoreIn this paper a WLAN network that accesses the Internet through a GPRS network was implemented and tested. The proposed network is managed by the Linux based server. Because of the limited facilities of GPRS such as dynamic IP addressing besides to its limited bandwidth a number of techniques are implemented to overcome these limitations.
Dynamic Host Configuration Protocol (DHCP) server was added to provide a single central control for all TCP/IP resources. Squid Proxy was added to provide caching of the redundant accessed Web content to reduce the Internet bandwidth usage and speeding up the client’s download time. Network Address Translation (NAT) service was configured to share one IP ad
... Show MoreThis paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.
Due to that the Ultra Wide Band (UWB) technology has some attractive features like robustness to multipath fading, high data rate, low cost and low power consumption, it is widely use to implement cognitive radio network. Intuitively, one of the most important tasks required for cognitive network is the spectrum sensing. A framework for implementing spectrum sensing for UWB-Cognitive Network will be presented in this paper. Since the information about primary licensed users are known to the cognitive radios then the best spectrum sensing scheme for UWB-cognitive network is the matched filter detection scheme. Simulation results verified and demonstrated the using of matched filter spectrum sensing in cognitive radio network with UWB and pro
... Show More