Preferred Language
Articles
/
alkej-155
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
...Show More Authors

Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventional PID controller in the robot manipulator is replaced by NN self tuning PID controller so as to achieve trajectory tracking with minimum steady-state error and improving the dynamic behavior (overshoot). The simulation results showed that the proposed controller has strong self-adaptability over the conventional PID controller.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Automatic voice activity detection using fuzzy-neuro classifier
...Show More Authors

Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto

... Show More
View Publication Preview PDF
Scopus (7)
Scopus
Publication Date
Fri Oct 02 2009
Journal Name
Noise And Health
Expert system to predict effects of noise pollution on operators of power plant using neuro-fuzzy approach
...Show More Authors

Ration power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (23)
Scopus Crossref
Publication Date
Sun Jan 02 2022
Journal Name
Journal Of The College Of Languages (jcl)
The Role Of Historical Memory In Promoting The Concept Of Belonging To The Homeland In A Novel "Mazurka For Two Dead Men" Of The Spanish Novelist Camilo Jose Cela: El Papel De La Memoria Histórica En El Apoyo Del Concepto De Pertenencia A La Patria , En La Novela “Mazurca Para Dos Muertos”, De Camilo José Cela
...Show More Authors

       The present study discusses the significant role of the historical memory in all the Spanish society aspects of life. When a novelist takes the role and puts on the mask of one of the novel’s protagonists or hidden characters, his memory of the events becomes the keywords of accessing the close-knit fabric of society and sheds lights on deteriorating social conceptions in  a backwards social reality that rejects all new progressive ideas and  modernity. Through concentrating on the society flawing aspects and employing everything of his stored memory, the author uses sarcasm to criticize and change such old deteriorating reality conceptions.   

   &nbs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering
Developing a Model to Estimate the Productivity of Ready Mixed Concrete Batch Plant
...Show More Authors

Productivity estimating of ready mixed concrete batch plant is an essential tool for the successful completion of the construction process. It is defined as the output of the system per unit of time. Usually, the actual productivity values of construction equipment in the site are not consistent with the nominal ones. Therefore, it is necessary to make a comprehensive evaluation of the nominal productivity of equipment concerning the effected factors and then re-evaluate them according to the actual values.

In this paper, the forecasting system was employed is an Artificial Intelligence technique (AI). It is represented by Artificial Neural Network (ANN) to establish the predicted model to estimate wet ready mixe

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Wear Parameters in AISI 4340 Steel
...Show More Authors

Abstract

 This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine

... Show More
View Publication Preview PDF
Publication Date
Wed May 22 2024
Journal Name
Scientific Reports
The use of image analysis to study the effect of moisture content on the physical properties of grains
...Show More Authors
Abstract<p>Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics </p> ... Show More
View Publication
Scopus (13)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Performance Enhancement of a Piezoelectric Harvester Included into an Autonomous System
...Show More Authors

Autonomous systems are these systems which power themselves from the available ambient energies in addition to their duties. In the next few years, autonomous systems will pervade society and they will find their ways into different applications related to health, security, comfort and entertainment. Piezoelectric harvesters are possible energy converters which can be used to convert the available ambient vibration energy into electrical energy. In this contribution, an energy harvesting cantilever array with magnetic tuning including three piezoelectric bimorphs is investigated theoretically and experimentally. Other than harvester designs proposed before, this array is easy to manufacture and insensitive to manufacturi

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Enhancing the Performance of Piezoelectric Energy Harvesters Using Permanent Magnets
...Show More Authors

A cantilevered piezoelectric beam with a tip mass at its free end is a common energy harvester configuration. This paper introduces a new principle of designing such a harvester which increases the generated voltage without changing the natural frequency of the harvester: The attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the natural frequency. Three setups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle. Theoretical and experimental results show that magnetically stiffe

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
The use of ARIMA, ANN and SVR models in time series hybridization with practical application
...Show More Authors

Forecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the predicti

... Show More
View Publication Preview PDF