Direct field-orientation Control (DFOC) of induction motor drives without mechanical speed sensors at the motor shaft has the attractions of low cost and high reliability. To replace the sensor, information on the rotor speed and position are extracted from measured stator currents and from voltages at motor terminals. In this paper presents direct field-orientation control (DFOC) with two type of kalman filter (complete order and reduced order extended kalman filter) to estimate flux, speed, torque and position. Simulated results show how good performance for reduced order extended kalman filter over that of complete order extended kalman filter in tracking performance and reduced time of state estimation.
This research includes theoretical and evaluation design of a polarizer filter of high transmission in the near IR region of (900-1200nm) for different incidence angles to obtain a long wave and short wave pass filter using analytical calculations. Results refer to a new configuration design in fewer layers than used in previous studies in the long wave pass at incidence angles (45o,50o,55o). Adopted Hafnium dioxide (HfO2) and Magnesium fluoride (MgF2) as coating material at design wavelength (933nm), the study also included design short wave pass polarizer by using the same coating material.
Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show Moreorder to increase the level of security, as this system encrypts the secret image before sending it through the internet to the recipient (by the Blowfish method). As The Blowfish method is known for its efficient security; nevertheless, the encrypting time is long. In this research we try to apply the smoothing filter on the secret image which decreases its size and consequently the encrypting and decrypting time are decreased. The secret image is hidden after encrypting it into another image called the cover image, by the use of one of these two methods" Two-LSB" or" Hiding most bits in blue pixels". Eventually we compare the results of the two methods to determine which one is better to be used according to the PSNR measurs
In this study, a cholera model with asymptomatic carriers was examined. A Holling type-II functional response function was used to describe disease transmission. For analyzing the dynamical behavior of cholera disease, a fractional-order model was developed. First, the positivity and boundedness of the system's solutions were established. The local stability of the equilibrium points was also analyzed. Second, a Lyapunov function was used to construct the global asymptotic stability of the system for both endemic and disease-free equilibrium points. Finally, numerical simulations and sensitivity analysis were carried out using matlab software to demonstrate the accuracy and validate the obtained results.
The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreFinger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreVariation order plays an important role in calculating the final cost and time. The paper aims to determine the causes of variation orders in projects performed between 2007-2014 in Erbil governorate projects. Data was collected from contract documents. Performed in the Erbil governorate projects from 2007-2014. The study seeks to identify the most significant causes of delays by assessing the common causes of delays in terms of frequency, severity and
important indices of owners, consultants and contractors related to&n
... Show MorePrecision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show More